K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

10 tháng 8 2017

\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b+1\right).2ab+\frac{4}{a+b}=2\left(a+b+1\right)+\frac{4}{a+b}\)

\(\Rightarrow A\ge\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)

\(\Rightarrow A\ge2\sqrt{ab}+2\sqrt{\left(a+b\right).\frac{4}{a+b}}+2\)

\(\Rightarrow A\ge2+4+2=8\)

"=" khi \(a=b=1\)

8 tháng 12 2021

\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)

Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)

Từ giả thiết \(1\le a\le2\) =>  ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)

Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)

Vì vậy ta có P:

\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ

 

16 tháng 7 2020

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

21 tháng 7 2020

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq