K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

28 tháng 10 2021

a, (x+3)2 - ( 2x + 1 ).( x+3)=0              b,     x3-12x2+36x =0

=> (x+3).(x+3-2x-1)                             => x(x2-12x+36) = 0

=>(x+3).(-x+2)                                     => x(x-6)2 = 0

=> x+3=0  <=> x=-3                            => x=0        <=> x=0

     -x+2=0 <=> x=-2                                 x-6= 0    <=> x=6

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

16 tháng 10 2021

mình cần gấp

 

17 tháng 10 2021

a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)

\(\Leftrightarrow2x^2-2x-2x^2=-6\)

\(\Leftrightarrow x=3\)

b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3
23 tháng 7 2016

giúp mình với

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3

25 tháng 10 2021

a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\)

\(\Rightarrow x^2-2x+1+9-x^2=0\)

\(\Rightarrow2x=10\Rightarrow x=5\)

b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\)

\(\Rightarrow\left(x-2-2x-1\right)\left(x-2+2x+1\right)=0\)

\(\Rightarrow-\left(x+3\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

25 tháng 10 2021

a) \(\left(x-1\right)^2+\left(3-x\right)\left(3+x\right)=0\\ \Leftrightarrow x^2-2x+1+9-x^2=0\\ \Leftrightarrow-2x=-10\\ \Leftrightarrow x=5\)

b) \(\left(x-2\right)^2-\left(2x+1\right)^2=0\\ \Leftrightarrow x^2-4x+4-4x^2-4x-1=0\\ \Leftrightarrow-3x^2-8x+3=0\\ \Leftrightarrow3x^2+8x-3=0\\ \Leftrightarrow\left(3x^2+9x\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

27 tháng 7 2016

a) (x+1)(3-x)>0

TH1: \(\begin{cases}x+1>0\\3-x>0\end{cases}\)<=> -1<x<3

TH2: \(\begin{cases}x+1< 0\\3-x< 0\end{cases}\) hệ này vô nghiệm

vậy giá trị x thỏa mãn là : -1<x<3

câu b,c cũng tưng tự

27 tháng 7 2016

a. \(\left(x+1\right)\left(3-x\right)>0\)

TH1 : x+1>0;3-x>0

=> x>-1;x<3

=>-1<x<3

TH2 : x+1<0;3-x<0

=>x<-1;x>3

=> vô lý

 

2 tháng 11 2018

\(x^2-3x+2.\left(x-3\right)=0\)

\(x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(x.\left(x-3\right)-3x+9=0\)

\(x.\left(x-3\right)-3.\left(x-3\right)=0\)

\(\left(x-3\right)^2=0=>x=3\)

2 tháng 11 2018

a,\(x^2-3x+2\left(x-3\right)=0.\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

12 tháng 8 2019

a) x(x-1) - (x+1)(x+2) = 0

    x\(^2\)- x -x\(^{^2}\)-2x +x+2=0

     -2x+2=0

      -2x=0+2

       -2x=2

         x=-1

Vậy x bằng -1