tìm các số a,b,c biết: a/2 = b/3 ; b/5 = c/4 và a-b+c = -49
cảm ơn các bn mik đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
1.
a:b:c:d = 2:3:4:5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
=> a = -3.2 = -6
b = -3.3 = -9
c = -3.4 = -12
d = -3.5 = -15
2.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{18}=\frac{a+2b-3c}{2+6-18}=-\frac{20}{-10}=2\)
=> a = 4
b = 6
c = 8
3.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> a2 = 4.4 = 16 => a = +-4
b2 = 4.9 = 36 => b = +-6
2c2 = 4.32 = 128 => c2 = 64 => c = +-8
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{2a}{2.2}=\frac{b}{3}=\frac{3c}{3.5}=\frac{2a+b-3c}{4+3-15}=\frac{64}{-8}=-8\)
\(\frac{a}{2}=-8\Rightarrow a=\left(-8\right).2=-16\)
\(\frac{b}{3}=-8\Rightarrow b=\left(-8\right).3=-24\)
\(\frac{c}{5}=-8\Rightarrow c=\left(-8\right).5=-40\)
Vậy a=-16 ; b=-24 và c=-40
ai giúp với khẩn cấp !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49
\(\Rightarrow\frac{a.1}{2.5}=\frac{b.1}{3.5}\Rightarrow\frac{a}{10}=\frac{b}{15}\)(1)
\(\Rightarrow\frac{b.1}{5.3}=\frac{c.1}{4.3}\Rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2)\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)và a-b+c=-49
Áp dụng tính chất của dãy tỉ số bằng nhau:
Ta được:\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b+c}{10-15+12}=\frac{-49}{7}=-7\)
Vì \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Vậy a=-70
b=-105
c=-84
\(\frac{a}{2}=\frac{b}{3}\) => \(\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\) => \(\frac{b}{15}=\frac{c}{12}\)
=> \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{10}=-7\) => a = -70
\(\frac{b}{15}=-7\)=> b = -105
\(\frac{c}{12}=-7\) => c = -84