K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)

=> x = -10/11 ; y = -4/11 ; z = -5/22

b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)

=> a = -6/5 ; b = -4/5 ; c = -3/5

c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)

=> a = -585/7 ; b = -780/7 ; c = -702/7

10 tháng 8 2020

a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)

=> x = -2 ; y = -0,8 ; z = -0,3

b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)

=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)

=> a =  -1,2 ; b = -0,8 ; c = -0,6

c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)

=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)

=> a = 1755 ; b = 1560 ; c = 1404

14 tháng 10 2023

a) \(4x+4=16\)

\(4x=12\)

\(x=3\)

b) \(34\left(2x-6\right)=0\)

\(2x=6\)

\(x=3\)

c) \(15:x=5\)

\(x=15:5=3\)

d) \(20-\left(x+14\right)=5\)

\(x+14=20-5=15\)

\(x=15-14=1\)

14 tháng 10 2023

a) \(4x+4=16\)

\(\Rightarrow4x=16-4\)

\(\Rightarrow4x=12\)

\(\Rightarrow x=\dfrac{12}{4}\)

\(\Rightarrow x=3\)

b) \(34\cdot\left(2x-6\right)=0\)

\(\Rightarrow2x-6=\dfrac{0}{36}\)

\(\Rightarrow2x-6=0\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=\dfrac{6}{2}\)

\(\Rightarrow x=3\)

c) \(15:x=5\)

\(\Rightarrow x=15:5\)

\(\Rightarrow x=3\)

d) \(20-\left(x+14\right)=5\)

\(\Rightarrow x+14=20-5\)

\(\Rightarrow x+14=15\)

\(\Rightarrow x=15-14\)

\(\Rightarrow x=1\)

3 tháng 8 2020

Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)

\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)

\(\Rightarrow VT=VP\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
 

3 tháng 8 2020

4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)

=> 2a + 5 = 9

=> 2a = 4

=> a = 2

Thay a vào (1) ta có : 

\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)

=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)

Vậy a = 2 ; b = 5,5 ; c = 4

5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

4(a - b)(b - c) = (c - a)2

=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2

=> 4(-k)(-k) = (-2k)2

=> (-2)2(-k)2 = (-2k)2

=> 22k2 = (2k)2

=> (2k)2 = (2k)2

=> 4(a - b)(b - c) = (c - a)2 (đpcm)

30 tháng 12 2015

làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy

30 tháng 12 2015

A / A' + B' / B=1 --->AB + A'B' = A'B (1)

B / B' + C'/ C=1--->BC +B'C' = B'C(2)

nhan 2 ve  cua pt 1 cho C

nhan 2 ve cua pt 2 cho A'

Cộng hai vế của pt (1) và (2) rồi triệt tiêu ta sẽ có kết quả. tự giải nhé

2(a+b+c)=12,5-25,12-7,4=-20,02

=>a+b+c=-10,01

=>c=-22,51; b=-2,61; a=15,11

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

12 tháng 11 2017

a:b:c=2:3:5

\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c-a}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow a=4;b=6;c=10\)

12 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)

\(\Rightarrow\)\(a=3.2=6\)

\(\Rightarrow\)\(b=3.3=9\)

\(\Rightarrow\)\(c=3.5=15\)

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;)