Tìm 2 số hữu tỉ a & b sao cho a+b=a.b=a:b (b khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
$\frac{1}{15}-\frac{9}{15}=\frac{-8}{15}$
$\frac{2}{15}-\frac{10}{15}=\frac{-8}{15}$
$\frac{3}{15}-\frac{11}{15}=\frac{-8}{15}$
Câu 2:
$\frac{-9}{15}+\frac{1}{15}=\frac{-8}{15}$
$\frac{-10}{15}+\frac{2}{15}=\frac{-8}{15}$
$\frac{-11}{15}+\frac{3}{15}=\frac{-8}{15}$
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
\(a-b=\frac{2}{3}\left(a+b\right)\Leftrightarrow a-b=\frac{2}{3}a+\frac{2}{3}b\Leftrightarrow\frac{1}{3}a=\frac{5}{3}b\Leftrightarrow a=5b\Rightarrow a:b=5\)
\(\Rightarrow a-b=\frac{2}{3}a+\frac{2}{3}b=5\Leftrightarrow\hept{\begin{cases}a-b=5\\a+b=\frac{15}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{25}{4}\\b=\frac{5}{4}\end{cases}}\)
1. Ta có a - b =2 (a+b)=2a+3b
<=> a-2a =2b+b
<=>a=3b<=> =2b+b
Thay a =-3b <=> -3b
=> a : b =-3b : b = 3
=>a-b=3
2(a+b)=-3<=>a+b=\(-\frac{3}{2}\)(Phân số nghịc đảo -)
Khi đó a= \(\frac{\left(a+b\right)+\left(a-b\right)}{2}=\frac{\left(-\frac{3}{2}\right)+\left(-3\right)}{2}=\frac{9}{4}\)
b=\(\frac{\left(a+b\right)-\left(a-b\right)}{2}=\frac{\left(-\frac{3}{2}\right)+\left(-3\right)}{2}=\frac{3}{4}\)
Thay a - b (a+1)
a : b =a-b
<=> b - 1 = -1
a-b=ab
=> a +b = 1
a-b = ab hay = a+1=-a
=>2a-1
=>\(\frac{1}{2}\)
ĐK: a,b thuộc Q
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1