ΔABC vuông cân tại A, AH⊥BC. Lấy M tùy ý trên BC. Vẽ các đường thẳng song song với AC và AB cắt AB tại D; cắt AC tại E. C/m góc DHE = 90 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AC chung
AB=AD
Do đó: ΔABC=ΔADC
c: Ta có: ΔABC=ΔADC
nên BC=DC
hay ΔCBD cân tại C
Lời giải:
Ta có:
$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$
Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$
$\Rightarrow \triangle PBM$ cân tại $P$
$\Rightarrow PB=PM$
Mà $PM=PD$ do tính đối xứng
$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$
$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)
$=\frac{1}{2}\widehat{BAC}$
Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$
$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$
Như vậy:
$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$
Kéo theo $D\in (ABC)$
Ta có đpcm.
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Vậy: BC=35cm
Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)
hay AH=16,8(cm)
Vậy: BC=35cm; AH=16,8cm
a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))
\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)
\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)