K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đó: ΔABC=ΔADC

c: Ta có: ΔABC=ΔADC

nên BC=DC

hay ΔCBD cân tại C

7 tháng 2 2021

undefinedundefined

Thông cảm chút vì chữ mk xấu

Chúc bạn học tốt! banhqua

9 tháng 2 2021

cảm ơn bạn rất nhiều

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Ta có:

$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$

Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$

$\Rightarrow \triangle PBM$ cân tại $P$

$\Rightarrow PB=PM$

Mà $PM=PD$ do tính đối xứng

$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$

$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)

$=\frac{1}{2}\widehat{BAC}$

Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$

$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$ 

Như vậy:

$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$

Kéo theo $D\in (ABC)$

Ta có đpcm.

8 tháng 1 2022

lam ơn giúp mình

 

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Vậy: BC=35cm

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)

hay AH=16,8(cm)

Vậy: BC=35cm; AH=16,8cm

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))

\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)

\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)