- Tìm tất cả các số tự nhiên có 3 chữ số có dạng abc sao cho:
- abc=n2-1 ; cba=(n-2)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc + acb + bac + bca + cab + cba = 1998
100a+10b+c + 100a+10c+b + 100b+10a+c + 100b+10c+a + 100c+10a+b + 100c+10b+a = 1998
222a + 222b + 222c = 1998
222 (a+b+c) = 1998
a+b+c = 9
Vì a, b, c là 3 số lẻ khác nhau nên a, b, c là 3 số 1, 3, 5
ĐK :0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N
Trừ từng vế pt (1) và (2) ta có
99(a−c)=4n−599(a−c)=4n−5 Vì (a−c)(a−c) là số tự nhiên nên 4n−54n−5 chia hết cho 99 mà 39≤4n−5≤11939≤4n−5≤119
⇒4n−5=99⇒n=26⇒abc=262−1=675⇒4n−5=99⇒n=26⇒abc=262−1=675 (nhận)
Thử lại: cba=576=242=(26−2)2cba=576=242=(26−2)2 ( đúng)
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1) cba = 100.c + 10.b + a = n^2- 4n + 4 (2) Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5 Suy ra 4n - 5 chia hết 99 Vì 100 ≤ ≤≤ abc ≤ ≤≤ 999 nên: 100 ≤ n^2 -1 ≤ ≤≤ 999 => 101 ≤ ≤≤ n^2 ≤ ≤≤ 1000 => 11 ≤ ≤≤ 31 => 39 ≤ ≤≤ 4n - 5 ≤ ≤≤ 119 Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6
nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)
suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0
tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li
tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625