K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: f(x)=2x^4+2x^3+2x^2+5x+6

g(x)=x^4-2x^3-x^2-5x+3

c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9

K(x)=f(x)-2g(x)-4x^2

=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2

=6x^3+15x

c: K(x)=0

=>6x^3+15x=0

=>3x(2x^2+5)=0

=>x=0

d: H(x)=3x^4+x^2+9>=9

Dấu = xảy ra khi x=0

a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)

\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)

\(=6x^4-4x^3-x+11\)

Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)

\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)

\(=5x^4-4x^3-2x^2-x+9\)

b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)

\(=x^4+2x^2+2\)

24 tháng 8 2019

Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)

                  \(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)

                  \(=x^4+5x^3+x^2-4x-1.\)

Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)

Ta có:  \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)

                  \(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)

                  \(=3x^4+5x^3-x^2+2x+17\)

Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)

F(x)=62+5x+8+3x-3x2+3x3

      =(36+8)+(5x+3x)-3x2+3x3

      =3x3-3x2+8x+44

G(x)=12x2-6-9x2+3x3

       =3x3+(12x2-9x2)-6

       =3x3+3x2-6

F(x)+G(x)=3x3-3x2+8x+44+3x3+3x2-6

                =(3x3+3x3)+(-3x2+3x2)+8x+(44-6)

                =6x3+8x+38

HQ
Hà Quang Minh
Giáo viên
6 tháng 8 2023

\(F\left(x\right)=G\left(x\right)\\ \Rightarrow6^2-5x+8+3x-3x^2+3x^3=12x^2-6-9x^2+3x^3\\ \Leftrightarrow-3x^2-2x+44=3x^2-6\\ \Leftrightarrow6x^2+2x-50=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{301}}{6}\\x=\dfrac{-1-\sqrt{301}}{6}\end{matrix}\right.\)

loading...  loading...  *xl cậu nha ;-; câu cuối mình chưa học nên kbiet làm ;-;;;.

a)+)\(f\left(x\right)=3x^4-5x^3-x^2+1007\)

\(\Rightarrow f\left(x\right)=\left(3x^2-5x-1\right)x^2+1007\)

+)\(g\left(x\right)=2x^4+3x^3-1007\)

\(\Rightarrow g\left(x\right)=\left(2x^2+3x\right)x^2-1007\)

\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)x^2+1007\right]-\left[\left(2x^2+3x\right)x^2-1007\right]-2014\)

\(f\left(x\right)-g\left(x\right)-2014=\left(3x^2-5x-1\right)x^2+1007-\left(2x^2+3x\right)x^2+1007-2014\)

\(f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)-\left(2x^2+3x\right)\right]x^2+\left(1007+1007-2014\right)\)

\(f\left(x\right)-g\left(x\right)-2014=3x^2-5x-1-2x^2-3x\)

\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=x^2-2x-1=\left(x-1\right)^2\)

b)\(2014+g\left(x\right)-h\left(x\right)=f\left(x\right)\)

\(\Rightarrow-h\left(x\right)=f\left(x\right)-g\left(x\right)-2014\)

\(\Rightarrow-h\left(x\right)=\left(x-1\right)^2\)

\(\Rightarrow h\left(x\right)=-\left[\left(x-1\right)^2\right]\)

Chúc bạn học tốt

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

14 tháng 9 2019

c. Ta có f(x) + g(x)

=(x3 - 2x2 + 2x - 5) + (-x3 + 3x2 - 2x + 4) = x2 - 1

Ta có x2 - 1 = 0 ⇒ x2 = 1 ⇒ x = 1,x = -1

Vậy nghiệm của đa thức h(x) là x = ±1 (1 điểm)

19 tháng 4 2018

f(x) + g(x) = 2x4 + 2x2

f(x) - g(x) = x4 - x2 + 2x

suy ra : f(x) = [ ( 2x4 + 2x2 ) + (  x4 - x2 + 2x ) ] : 2 =  \(\frac{3x^4+x^2+2x}{2}\)

g(x) =  [ ( 2x4 + 2x2 ) - (  x4 - x2 + 2x ) ] : 2 = \(\frac{x^4+3x^2-2x}{2}\)