Cho tam giác ABC vuông tại A. Vẽ đường tròn ngoại tiếp bán kính R và nội tiếp bán kính r của tam giác đó. Biết R = 5cm; r = 2cm. Tính AB + AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Đặt AB = x ; AC = y ( ĐK x ; y > 0 )
BC = 2R = 2.5 = 10
Theo py ta go => x^2 + y^2 = BC^2 = 100
r = \(\frac{AB+AC-BC}{2}=\frac{x+y-10}{2}=3\Leftrightarrow x+y=16\) (2)
Từ (1) v/s (2) => x^2 + y^2 = 100
và x + y = 16
Làm trên này là fai có cáh giải nuk cháu ak, ghi kq chỉ tổ tốn côg
Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10
Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2
AB2+AC2=100 (Pytago)
Giải pt ra, ta được: (AB;AC)=(6;8)
=> AB+AC=14
bằng 14 nha !