Cho 2 góc kề bù AOB và BOC. Vẽ Ox là tia phân giác của AOB; vẽ Oy sao cho xOy=90o. Chứng minh rằng Oy là tia phân giác của BOC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì góc bOc kề bù với góc aOb nên Oa và Oc là hai tia đối nhau. Tương tự Ob và Od là hai tia đối nhau.
Do đó hai góc bOc và aOd đối đỉnh => b O c ^ = a O d ^
Lại có: c O f ^ = 1 2 b O c ^ , a O e ^ = 1 2 a O d ^ nên c O f ^ = a O e ^
Mà Oa và Oc là hai tia đốì nhau nên c O f ^ và a O e ^ đối đỉnh
Ve nhu the nao vay,minh khong biet
minh moi hoc lop 4 thoi ma
a1) Trên nửa mặt phẳng bờ chứa tia AC có: A O B ^ và B O C ^ là 2 góc kề bù mà
Ta có A O B ^ + B O C ^ = A O C ^
⇒ B O C ^ = 180 0 − A O B ^ ⇒ B O C ^ = 100 0
A O B ^ và B O C ^ là hai góc kề bù nên
A O B ^ + B O C ^ = 180 0
⇒
B
O
C
^
=
180
0
−
A
O
B
^
⇒
B
O
C
^
=
100
0
a2) Ta có: OD là tia phân giác của A O B ^ nên A O D ^ = D O B ^ = 80 0 2 = 40 0 .
Ta lại có: Tia OE vuông góc với OD ⇒ O D ⊥ O E ⇒ D O E ^ = 90 0 .
Mà tia OE nằm trong B O C ^ , nên tia OB nằm giữa 2 tia OD và OE.
⇒ D O B ^ + B O E ^ = D O E ^ ⇒ B O E ^ = 90 0 − D O B ^ ⇒ B O E ^ = 50 0
b) Từ đó ta tính được A O E ^ = 130 0 . Mà A O E ^ + E O C ^ = A O C ^ Vì sao
⇒ E O C ^ = 180 0 − A O E ^ ⇒ E O C ^ = 50 0
Vậy tia OE là tia phân giác của B O C ^ .
Tia OE nằm trong B O C ^ nên OE nằm giữa OB và OC.
Suy ra
B O E ^ + E O C ^ = B O C ^
⇒ E O C ^ = B O C ^ − B O E ^ = 100 0 − 50 0 = 50 0
⇒ E O C ^ = E O B ^ (cùng bằng 50 0 ).
Vậy tia OE là tia phân giác của B O C ^ .
hình tự vẽ
vì AOB gấp đôi BOC
\(\Rightarrow\)AOB = 2 . BOC
Mà AOB + BOC = 180 độ
2 . BOC + BOC = 180 độ
3 . BOC = 180 độ
BOC = 60 độ
OM là tia phân giác của BOC
=> BOM = MOC = \(\frac{BOC}{2}=30^o\)
=> AOM = 2 . 60 + 30 = 150 độ
Vì AOB và BOC là 2 góc kề bù=> \(\widehat{AOB}+\widehat{BOC}=90^o\)
Mà \(\widehat{AOB}=2\widehat{BOC}\left(tđb\right)\)\(=>\widehat{AOB}=60^o\)