K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Sửa lại đề theo bạn ns:

Ta có:

\(xy.yz.xz=\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{27}{10}\)

\(\Rightarrow\left(xyz\right)^2=\dfrac{81}{100}\Rightarrow xyz=\pm\dfrac{9}{10}\)

Xét \(xyz=-\dfrac{9}{10}\) ta có:

\(\left\{{}\begin{matrix}x=xyz:yz=-\dfrac{9}{10}:\dfrac{3}{5}=-\dfrac{3}{2}\\y=xyz:xz=-\dfrac{9}{10}:\dfrac{27}{10}=-\dfrac{1}{3}\\z=xyz:xy=-\dfrac{9}{10}:\dfrac{1}{2}=-\dfrac{9}{5}\end{matrix}\right.\).

Xét \(xyz=\dfrac{9}{10}\) ta có:

\(\left\{{}\begin{matrix}x=xyz:yz=\dfrac{9}{10}:\dfrac{3}{5}=\dfrac{3}{2}\\y=xyz:xz=\dfrac{9}{10}:\dfrac{27}{10}=\dfrac{1}{3}\\z=xyz:xy=\dfrac{9}{10}:\dfrac{1}{2}=\dfrac{9}{5}\end{matrix}\right.\)

Vậy............ Chúc bạn học tốt!!!

16 tháng 7 2017

Mạng vs chả lỗi @@!

Ta có:

\(2y=\dfrac{3}{5}\Rightarrow y=\dfrac{3}{10}\)

Thay \(y=\dfrac{3}{10}\) vào \(xy=\dfrac{1}{2}\) ta được:

\(\dfrac{3}{10}x=\dfrac{1}{2}\Rightarrow x=\dfrac{5}{3}\)

Thay \(x=\dfrac{5}{3}\) vào \(xz=\dfrac{27}{10}\) ta được:

\(\dfrac{5}{3}z=\dfrac{27}{10}\Rightarrow z=\dfrac{81}{50}\)

Chúc bạn học tốt!!!

19 tháng 8 2016

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

10 tháng 2 2023

không biết :))))

`A = x - 2y + xy - 3x + y^2`

Bậc: `2`.

`B = (1-1/2)xyz - x^2y + (1+1/2)xz`

`= 1/2xyz - x^2y + 3/2xz`

Bậc: `3`

25 tháng 10 2020

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Nhìn lozic qué bạn ey!!!