K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Bạn đăng nhầm mục tiếng Anh rồi bạn ạ, bạn gửi lại qua mục toán bạn nhé! Cảm ơn bạn!

21 tháng 10 2017

bạn ơi đăng như thế có làm sao

18 tháng 10 2017

có gì đó sai sai ở câu b

18 tháng 10 2017

k sai nhaa! Ban xem lai di nhaa!!!banhqua

14 tháng 6 2015

10/3                                

26 tháng 2 2017

10/3 đó

17 tháng 3 2017

Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

17 tháng 3 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Mà đề bài cho:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=2\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\\x+y-3=2z\left(3\right)\\x+y+z=\dfrac{1}{2}\left(4\right)\end{matrix}\right.\)

Ta có:

\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được:

\(\dfrac{1}{2}-x+1=2x\Rightarrow\dfrac{3}{2}=3x\Rightarrow x=\dfrac{1}{2}\)

\((*)\) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được:

\(\dfrac{1}{2}-y+2=2y\Rightarrow\dfrac{5}{2}=3y\Rightarrow y=\dfrac{5}{6}\)

\((*)\) \(x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-5}{6}\)

Vậy: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

17 tháng 10 2017

\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

Chúc bạn học tốt!

28 tháng 7 2017

Ta có:

\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\)=>\(\frac{y}{15}=\frac{z}{12}\)

=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)

=>\(\frac{x}{10}=7\)=>x=7.10=70

   \(\frac{y}{15}=7\)=>y=7.15=105

   \(\frac{z}{12}=7\)=>z=7.12=84

Vậy x=70 ;y=105 ;z=84

28 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3}\rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\rightarrow\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-5+12}=\frac{-49}{17}\)

\(\Rightarrow x=-\frac{490}{17};y=-\frac{735}{17};z=-\frac{588}{17}\)