K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

thay vào ta đc

A=8

tk mk nha,,, mk tk lại

1 tháng 5 2019

a. P= (-8.x^2.y-2.5+6x^2)-(-7x^2y+2x^2)

b. P= vế phải cộng vế trái là ra

30 tháng 4 2019

a. P=-x^2.y-10+4.x^2

b.P= 7xy+x^2-11y

13 tháng 1 2019

a) P = 2x + 2xy - y

|x| = 2,5 => x thuộc { 2,5; -2,5 }

* TH1 : x = 2,5 và y = -0,75

Thay vào P ta có :

P = 2 . 2,5 + 2 . 2,5 . (-0,75) - ( -0,75 ) 

P = 2

* TH2 : x = -2,5 và y = -0,75

Thay vào P ta có :

P = 2 . ( -2,5 ) + 2 . ( -2,5 ) . ( -0,75 ) - ( -0,75 )

P = -0,5

Vậy.....

13 tháng 1 2019

b) \(Q=\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\)

\(Q=\frac{2}{3\cdot4}\)

\(Q=\frac{1}{3\cdot2}\)

\(Q=\frac{1}{6}\)

p/s: P làm Q, Q làm P :D

DD
9 tháng 10 2021

2) 

\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)

\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)

Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).

Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).

\(B=2a^2+b^2+c^2-ab+ac+bc\)

\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)

\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)

\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)

Dấu \(=\)khi \(a=b=c=0\).

Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).

DD
9 tháng 10 2021

1. 

a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm) 

suy ra đpcm

b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)

c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)

d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)

\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)

14 tháng 12 2021

2xy + y - 2x = 8

(2xy - 2x) + y = 8

2x . ( y-1) + y = 8

2x . ( y-1) + (y-1) = 8-1

(y-1) . ( 2x+1) = 7

Mà 7 có thể phân tích thành tích của 2 số tự nhiên là: 7 = 1.7

Ta có bảng sau:

y-1     2x+1     y       x

1          7         2        3

7           1         8        0

Vậy cặp số x;y thỏa mãn là: 3;2 và 0;8

_HT_

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

20 tháng 6 2018

\(\left(2x^2+5x+3\right):\left(x+1\right)-\left(4x-5\right)\)

\(=\dfrac{2x^2+2x+3x+3}{x+1}-4x+5\)

\(=\dfrac{2x\left(x+1\right)+3\left(x+1\right)}{x+1}-4x+5\)

\(=\dfrac{\left(x+1\right)\left(2x+3\right)}{x+1}-4x+5\)

\(=2x+3-4x+5\)

\(=-2x+8\)

thay x=-2 vào biểu thức ta có:

\(=-2\left(-2\right)+8=4+8=12\)

1 tháng 9 2023

a) \(3x^2-3xy-5x+5y\)

\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) \(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left[x^2-\left(y+1\right)^2\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

c) \(x^2+1+2x-y^2\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

f) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

a: =3x(x-y)-5(x-y)

=(x-y)(3x-5)

b: \(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

d:

Sửa đề: x^2+4x-2xy-4y+y^2

=x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

e: =x(x^2-2x+1)

=x(x-1)^2

f: =2(x^2+2x+1-y^2)

=2[(x+1)^2-y^2]

=2(x+1+y)(x+1-y)

3 tháng 7 2018

vt đề tử tế giùm -_-

nhìn dell hỉu giề :)

3 tháng 7 2018

bn ơi cs fải đề thế này ko?

\(2xy\left(x^2y-\frac{1}{2}xy\right)-2x^2y\left(xy-\frac{1}{2}y\right)+1\)

\(=\) \(2x^3y^2-x^2y^2-2x^3y^2+x^2y^2+1\)

\(=1\)

Vậy giá trị của biểu thức trên ko phụ thuộc vào biến nên giá trị của biểu thức luôn bằng 1