K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

1. Tìm cosin góc giữa 2 đg thẳng denta 1 : 10x +5y -1=0 và denta 2 : x = 2+t ; y = 1-t

\(\Delta\left(1\right):10x+5y-1=0\)

\(\Delta\left(2\right):\left\{{}\begin{matrix}x=2+t\\y=1-t\end{matrix}\right.\)

\(\Delta\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-\left(x-2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=x-2\\y=1-x+2\end{matrix}\right.\Leftrightarrow x+y-3=0\)

Ta có phương trình tổng quát của \(\Delta\left(2\right)\)\(x+y-3=0\)

\(cos\left(\Delta\left(1\right),\Delta\left(2\right)\right)=\frac{\left|a_1.a_2+b_1.b_2\right|}{\sqrt{a_1^2+b_1^2}\sqrt{a_2^2+b_2^2}}\)

\(=\frac{\left|10+5\right|}{\sqrt{1+1}.\sqrt{100+25}}=\frac{15}{5\sqrt{10}}\)

Bấm SHIFT COS\(\left(\frac{15}{5\sqrt{10}}\right)\)=o'''

\(=18^o26'5,82''\)

bài 2,3,4 tương tự vậy.

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

2.

Vecto pháp tuyến của $\Delta_1$: \(\overrightarrow{n_1}=(1,2)\)

Vecto pháp tuyến của $\Delta_2$: \(\overrightarrow{n_2}=(1,-1)\)

Cosin góc giữa 2 đường thẳng

\(\cos (\Delta_1,\Delta_2)=\frac{|\overrightarrow{n_1}.\overrightarrow{n_2}|}{|\overrightarrow{n_1}|.|\overrightarrow{n_2}|}=\frac{|1.1+2(-1)|}{\sqrt{1^2+2^2}.\sqrt{1^2+(-1)^2}}=\frac{\sqrt{10}}{10}\)

Đáp án A

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

1.

Vecto pháp tuyến của $\Delta_1: (10,5)$

$\Rightarrow$ vecto chỉ phương \(\overrightarrow{u_1}=(-5,10)\)

Vecto chỉ phương của $\Delta_2$ \(\overrightarrow{u_2}=(1,-1)\)

Cosin góc giữa 2 đường thẳng:

\(\cos (\overrightarrow{u_1},\overrightarrow{u_2})=\frac{|\overrightarrow{u_1}.\overrightarrow{u_2}|}{|\overrightarrow{u_1}||\overrightarrow{u_2}|}=\frac{|-5.1+10(-1)|}{\sqrt{(-5)^2+10^2}.\sqrt{1^2+(-1)^2}}=\frac{3\sqrt{10}}{10}\)

9. Cho đg thẳng d 3x +4y -5=0 và 2 điểm A(1;3) , B(2;m). Định m để A và B nằm cùng phía đối với d A m <0 B m > -1/4 C m>-1 D m =-1/4 10. Cho tam giác ABC với A(1;3) , B(-2;4) ,C(-1;5) và đg thẳng d : 2x -3y +6=0. Đg thẳng d cắt cạnh nào của tg ABC? A Cạnh AC B ko cạnh nào C cạnh AB D Cạnh BC 11. Khoảng cách từ điểm M (1;-1) đến đg thẳng denta 3x -4y -17=0 là A 2 B -18/5 C 2/5 D 10/căn 5 12. Tìm khoảng cách từ điểm O(0;0)...
Đọc tiếp

9. Cho đg thẳng d 3x +4y -5=0 và 2 điểm A(1;3) , B(2;m). Định m để A và B nằm cùng phía đối với d

A m <0

B m > -1/4

C m>-1

D m =-1/4

10. Cho tam giác ABC với A(1;3) , B(-2;4) ,C(-1;5) và đg thẳng d : 2x -3y +6=0. Đg thẳng d cắt cạnh nào của tg ABC?

A Cạnh AC

B ko cạnh nào

C cạnh AB

D Cạnh BC

11. Khoảng cách từ điểm M (1;-1) đến đg thẳng denta 3x -4y -17=0 là

A 2

B -18/5

C 2/5

D 10/căn 5

12. Tìm khoảng cách từ điểm O(0;0) tới đg thẳng denta x /6 + y/8=1

A 4,8

B 1/10

C 1/14

D 48/ căn 14

13. Khoảng cách từ điểm M (0;1) đến đg thẳng denta 5x -12y -1 =0 là

A 11/13

B căn 13

C 1

D 13/17

14. Khoảng cách từ điểm M(0;2) đến đg thẳng denta x =1 +3t ; y = 2+4t là

A 2/5

B 10/căn 5

C căn 5/2

D căn 2

15. Tg ABC với A(1;2) , B (0;3) , C(4;0). Chiều cao tam giác ứng với cạnh BC bằng

A 3

B 0,2

C 1/25

D 3/5

16. Tính diện tích tg ABC biết A(-2;1) , B(1;2) , C (2;-4)

A 3/căn37

B 3

C 1,5

D căn3

GIÚP MK VS MK ĐANG CẦN GẤP LẮM Ạ

2
20 tháng 4 2020

9. Cho đg thẳng d 3x +4y -5=0 và 2 điểm A(1;3) , B(2;m). Định m để A và B nằm cùng phía đối với d.

Hai điểm A và B nằm cùng phía với (d)

\(\Leftrightarrow\)(3.1+4.3-5).(3.2+4.m-5)>0

\(10\left(6+4m-5\right)>0\)

\(60+40m-50>0\Rightarrow m>-\frac{1}{4}\)

20 tháng 4 2020

10. Cho tam giác ABC với A(1;3) , B(-2;4) ,C(-1;5) và đg thẳng d : 2x -3y +6=0. Đg thẳng d cắt cạnh nào của tg ABC?

(bạn xem lại đề)

11. Khoảng cách từ điểm M (1;-1) đến đg thẳng denta 3x -4y -17=0 là:

\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{\left|3.1-4.\left(-1\right)-17\right|}{\sqrt{3^2+\left(-4\right)^2}}\)\(=2\)

Câu 12,13 tương tự vậy

14. Khoảng cách từ điểm M(0;2) đến đg thẳng denta x =1 +3t ; y = 2+4t là:

\(\Delta:\left\{{}\begin{matrix}x=1+3t\\y=2+4t\end{matrix}\right.\)

PTTQ của delta:\(4x-3y+2=0\)

áp dụng ct:

\(d_{\left(M,\Delta\right)}=\frac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}=\frac{4}{5}\)

( bạn xem lại đáp án)

16. Tính diện tích tg ABC biết A(-2;1) , B(1;2) , C (2;-4)

sABC= 5,5

NV
1 tháng 5 2020

33.

Đường thẳng d song song \(\Delta\) nên nhận \(\left(3;-4\right)\) là 1 vtpt

\(\Rightarrow\) Nhận \(\left(4;3\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=4t\\y=3t\end{matrix}\right.\)

41.

\(\Delta_1\) nhận \(\left(2;-3m\right)\) là 1 vtpt

\(\Delta_2\) nhận \(\left(m;4\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow2.4\ne-3m^2\Leftrightarrow m^2\ne-\frac{8}{3}\) (luôn đúng)

Vậy hai đường thẳng cắt nhau với mọi m

NV
1 tháng 5 2020

21.

\(\overrightarrow{AB}=\left(-2;2\right)=-2\left(1;-1\right)\) nên pt đường thẳng AB:

\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)

\(\overrightarrow{CD}=\left(-5;0\right)=-5\left(1;0\right)\) nên pt CD có dạng:

\(0\left(x-2\right)+1\left(y-2\right)=0\Leftrightarrow y-2=0\)

Giao điểm 2 đường thẳng có tọa độ là nghiệm: \(\left\{{}\begin{matrix}x+y-3=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

31.

\(\Delta_1\) nhận \(\left(m+1;-1\right)\) là 1 vtcp

\(\Delta_2\) nhận \(\left(3;-4\right)\) là 1 vtpt

Để hai đường thẳng song song:

\(3\left(m+1\right)+4=0\Rightarrow m=-\frac{7}{3}\)

NV
21 tháng 4 2020

13.

Áp dụng công thức khoảng cách:

\(d\left(M;\Delta\right)=\frac{\left|5.0-12.1-1\right|}{\sqrt{5^2+\left(-12\right)^2}}=1\)

6.

\(\overrightarrow{AB}=\left(-4;2\right)=-2\left(2;-1\right)\)

Phương trình AB:

\(1\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-5=0\)

Phương trình giao điểm: \(\left\{{}\begin{matrix}x+2y-5=0\\4x-7y+m=0\end{matrix}\right.\) \(\Rightarrow y=\frac{m+20}{15}\)

Để đường thẳng và đoạn AB có điểm chung

\(\Leftrightarrow2\le\frac{m+20}{15}\le4\Rightarrow10\le m\le40\)

28 tháng 4 2021

\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)

Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)

\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)

\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)