1)Tính giá trị của biểu thức:
a)x2-y2 Tại x= 87 ; y=13
b)x3-3x2 Tại x= 101
c)x3+ 9x2 + 27x + 27 Tại x=97
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x-y\right)\left(x+y\right)\)
\(=74\cdot100=7400\)
c: \(=\left(x+2\right)^3\)
\(=10^3=1000\)
a) \(=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) ta đc: \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10;y=-1\) ta đc:
\(10^3-\left(-1\right)^3=1000-1=999\)
c)\(=\left(x+2\right)^3\)
Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)
d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)
Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)
Ta có: x 2 – y 2 = (x + y)(x – y)
Thay x = 87, y = 13, ta được:
x 2 – y 2 = (x + y)(x – y)
= (87 + 13)(87 – 13)
= 100.74 = 7400
a. Ta có: x2 – y2 = (x + y)(x – y)
b. Thay x = 87, y = 13, ta được:
x2 – y2 = (x + y)(x – y)
= (87 + 13)(87 – 13)
= 100.74 = 7400
c. Ta có: x3 + 9x2 + 27x + 27
= x3 + 3.x2.3 + 3.x.32 + 33
= (x + 3)3
Thay x = 97, ta được: (x + 3)3 = (97 + 3)3 = 1003 = 1000000
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
b) Thay x=-1; y=1 và z=-2 vào B, ta được:
\(B=\dfrac{3\cdot\left(-1\right)\cdot1\cdot\left(-2\right)-2\cdot\left(-2\right)^2}{\left(-1\right)^2+1}=\dfrac{6-8}{1+1}=\dfrac{-2}{2}=-1\)
a) \(N=x^2-10x+25\)
\(N=x^2-2\cdot5\cdot x+5^2\)
\(N=\left(x-5\right)^2\)
Thay x = 55 vào N ta có:
\(N=\left(55-5\right)^2=2500\)
b) \(P=\dfrac{x^4}{4}-x^2y+y^2\)
\(P=\left(\dfrac{x^2}{2}\right)^2-2\cdot\dfrac{x^2}{2}\cdot y+y^2\)
\(P=\left(\dfrac{x^2}{2}-y\right)^2\)
Thay x = 4 và \(y=\dfrac{1}{2}\) vào P ta có:
\(P=\left(\dfrac{4^2}{2}-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\)
Phần b mình thấy kết quả nó sai b ạ thầy cho mình đáp án là 225/9
M=x^2*(-1)-y^2(x-y)+x^2-y^2+100
=-x^2+y^2+x^2-y^2+100
=100
a, Đặt \(A=x^2-y^2\)
Thay x = 87, y = 13 có:
\(A=87^2-13^2=\left(87+13\right)\left(87-13\right)\)
\(=100.74=7400\)
Vậy A= 7400 khi x = 87, y = 13
b, Đặt \(B=x^3-3x^2=x^3-3x^2+3x-1-3x+1\)
\(=\left(x-1\right)^3-\left(3x-1\right)\)
Thay x = 101 có:
\(B=100^3-302=999698\)
Vậy \(B=999698\) khi x = 101
c, Đặt \(C=x^3+9x^2+27x+27=\left(x+3\right)^3\)
Thay x = 97 \(\Rightarrow C=100^3=1000000\)
Vậy C = 1000000 khi x = 97
a, \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
Tại x = 87 ; y= 13
Ta có:
\(\left(87+13\right)\left(87-13\right)=100.74=7400\)
\(b,x^3-3x^2+3x-1-3x+1=\left(x-1\right)^3-\left(3x-1\right)\)Tại x = 101
Ta có :
\(\left(101-1\right)^3-\left(3x-1\right)=1000000-303+1=999698\)\(c,x^3+9x^2+27x+27=\left(x+3\right)^3\)
Tại x = 97
Ta có:
\(\left(97+3\right)^3=1000000\)