Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;-1); B(3;4;1) và C(4;1;-1). Viết phương trình mặt cầu có đường kính AB. Tìm tọa độ điểm M trên trục Oz sao cho thể tích khối tứ diện MABC =5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có xA' = 2xO-xA = 3; yA' = 2yO-yA = -2; zA' = 2zO-zA=1. Vậy A'(3;-2;1).
Đáp án B
Phương pháp :
A ( 2 ; 1 ; - 1 ) , B ( 3 ; 3 ; 1 ) , C ( 4 ; 5 ; 3 ) .
=> A, B, C thẳng hàng.
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Chọn C.
Phương pháp: Sử dụng các véc tơ bằng nhau.
Giả sử M,N lần lượt là hình chiếu của A, B lên CH.
Mặt cầu (S) cần tìm có tâm I là trung điểm của AB, với I(2;3;0)
Bán kính của (S) là \(R=\frac{AB}{2}=\sqrt{3}\)
Phương trình của (S) : \(\left(x-2\right)^2+\left(y-3\right)^2+z^2=3\)
Gọi \(M\left(0;0;t\right)\in Oz\)
Do \(V_{MABC}=5\) nên \(\frac{1}{6}\left|\left[\overrightarrow{AB},\overrightarrow{AC}\right]\overrightarrow{AM}\right|=5\Leftrightarrow\left|11+4t\right|=5\)
\(\Leftrightarrow\left|11=4t\right|=15\Leftrightarrow\begin{cases}11+4t=15\\11+4t=-15\end{cases}\)
\(\Leftrightarrow\begin{cases}t=1\Rightarrow M\left(0;0;1\right)\\t=-\frac{13}{2}\Rightarrow M\left(0;0;-\frac{13}{2}\right)\end{cases}\)