K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Câu 40: D

Câu 41: D

Câu 42: B

Câu 43: B

12 tháng 11 2018

Đáp án đúng : A

20 tháng 9 2017

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

$y'=\frac{2x}{\sqrt{2x^2+1}}$

$y'>0\Leftrightarrow 2x>0\Leftrightarrow x>0$ hay $x\in (0;+\infty)$

$y'< 0\Leftrightarrow 2x< 0\Leftrightarrow x\in (-\infty;0)$

Vậy hàm số đồng biến trên $(0;+\infty)$ và nghịch biến trên $(-\infty; 0)$

Đáp án A.

16 tháng 12 2023

cô ơi cô có thể giải giùm e đc ko ạ

15 tháng 1 2021

\(y'=-3.\dfrac{1}{3}.\cos^2x.\sin x+\dfrac{4}{\sin^2x}+\left(m+1\right)\sin x=\left(\sin^2-1\right)\sin x+\dfrac{4}{\sin^2x}+m.\sin x+\sin x\)

\(=\sin^3x+\dfrac{4}{\sin^2x}+m.\sin x\)

y đồng biến trên khoảng \(\left(0;\pi\right)\)  \(\Leftrightarrow y'\ge0,\forall x\in\left(0;\pi\right)\)

\(\Leftrightarrow\sin^3x+\dfrac{4}{\sin^2x}+m.\sin x\ge0\Leftrightarrow\sin^2x+\dfrac{4}{\sin^3x}\ge-m\)

\(f\left(x\right)=\sin^2x+\dfrac{4}{\sin^3x}\Rightarrow f'\left(x\right)=2.\sin x.\cos x-\dfrac{12\cos x}{\sin^4x}=2\cos x.\left(\sin x-\dfrac{6}{\sin^4x}\right)\)

\(f'\left(x\right)=0\Rightarrow2\cos x\left(\sin x-\dfrac{6}{\sin^4x}\right)=0\)

\(\Rightarrow x=\dfrac{\pi}{2}\in\left[0;\pi\right]\)

\(\Rightarrow\sin^2x+\dfrac{4}{\sin^3x}\ge-m\Leftrightarrow-m\le min_{x\in\left(0;\pi\right)}f\left(x\right)\)

\(\Leftrightarrow m\ge-5\Rightarrow m\in\left\{-5;-4;-3;-2;-1\right\}\)

Có 5 giá trị m t/m

P/s: Mới học đạo hàm nên thử sức xí :v

8 tháng 2 2017

Đáp án đúng : C

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Đáp án D.

25 tháng 10 2021

Cô giải thích sao lại ra D đi ạ

NV
18 tháng 6 2021

1.

\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)

Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

NV
18 tháng 6 2021

2.

Xét hàm \(f\left(x\right)=x^2-2x-3\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

30 tháng 5 2021

C1: \(a.sinx+b.cosx=c\) 

Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\) 

Bạn áp dụng công thức trên sẽ tìm ra m

C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)

Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)

Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)

Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến

Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến

Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến

Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến

Đ/A: Ý D

(Toi nghĩ thế)

 

31 tháng 5 2021

thank u

20 tháng 1 2017

Đáp án A