K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto MH=(1;1/2)=(2;1)

=>VTPT là (-1;2)

Phương trình MH là:

-1(x-1)+2(y-1)=0

=>-x+1+2y-2=0

=>-x+2y-1=0

b: Tọa độ C là:

-x+2y-1=0 và 3x+4y-17=0

=>x=3 và y=2

=>C(3;2)

Tọa độ B là:

x=2*0-3=-3 và y=2*1/2-2=1-2=-1

 

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

Tọa độ A là:

\(\left\{{}\begin{matrix}2x+y=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=0\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y-x-y=0-\left(-1\right)\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Đường cao AH: 2x+y=0

mà BC\(\perp\)AH

nên BC: -x+2y+c=0

Thay x=2 và y=3 vào -x+2y+c=0, ta được:

-2+2*3+c=0

=>c+4=0

=>c=-4

=>BC: -x+2y-4=0

=>x-2y+4=0

Tọa độ M là:

\(\left\{{}\begin{matrix}x-2y+4=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2y-4\\2y-4+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=2-4=-2\end{matrix}\right.\)

M(-2;1); B(2;3); C(x;y)

M là trung điểm của BC

nên \(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M\\y_B+y_C=2\cdot y_M\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2+x=2\cdot\left(-2\right)=-4\\3+y=2\cdot1=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\)

Vậy: C(-6;-1)

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

3 tháng 3 2021

answer-reply-image

Đây là bài làm tương tự nhé!thanghoa

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

14 tháng 10 2023

loading...  loading...  loading...