Cho tam giác ABC có trung tuyến AM, đường cao AH với M(0;\(\dfrac{1}{2}\)) ; H(1;1)
a) Viết phương trình tổng quát của đường thẳng MH
b) Biết AC: 3x+4x-17=0 . Tìm tọa độ các điểm A ,B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Tọa độ A là:
\(\left\{{}\begin{matrix}2x+y=0\\x+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y=0\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y-x-y=0-\left(-1\right)\\x+y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Đường cao AH: 2x+y=0
mà BC\(\perp\)AH
nên BC: -x+2y+c=0
Thay x=2 và y=3 vào -x+2y+c=0, ta được:
-2+2*3+c=0
=>c+4=0
=>c=-4
=>BC: -x+2y-4=0
=>x-2y+4=0
Tọa độ M là:
\(\left\{{}\begin{matrix}x-2y+4=0\\x+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2y-4\\2y-4+y+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=1\\x=2-4=-2\end{matrix}\right.\)
M(-2;1); B(2;3); C(x;y)
M là trung điểm của BC
nên \(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M\\y_B+y_C=2\cdot y_M\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2+x=2\cdot\left(-2\right)=-4\\3+y=2\cdot1=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\)
Vậy: C(-6;-1)
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)
a: vecto MH=(1;1/2)=(2;1)
=>VTPT là (-1;2)
Phương trình MH là:
-1(x-1)+2(y-1)=0
=>-x+1+2y-2=0
=>-x+2y-1=0
b: Tọa độ C là:
-x+2y-1=0 và 3x+4y-17=0
=>x=3 và y=2
=>C(3;2)
Tọa độ B là:
x=2*0-3=-3 và y=2*1/2-2=1-2=-1