K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

bạn ơi sao đề bài của bạn giống mình thế :)))

 

1 tháng 7 2016

bổ sung câu hỏi ạ :) :P Tìm tọa độ đỉnh B biết AD=\(3\sqrt{2}\)

21 tháng 8 2020

a/ Xét tg vuông ADF và tg vuông ACK có ^CAK chung 

=> tg ADF đồng dạng với tg ACK \(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AF.AC=AK.AD\)

b/

BE vuông góc AC; DF vuông góc với AC => BE//DF (Hai đường thẳng cùng vuông góc với 1 dt thứ 3 thì chúng // với nhau) (1)

Xét tg vuông ABE và tg vuông CDF có 

AB=CD (cạnh đối hbh)

AB//CD => ^BAE=^DCF (góc so le trong

=> tg ABE = tg CDF => BE=DF (2)

Từ (1) và (2) => BEDF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)

21 tháng 8 2020

Bạn tự vẽ hình nha, mình ko bt vẽ hình trên OLM đâu.

a) Xét 2 tam giác AFD và tam giác AKC có:

*Chung góc DAF

*Góc AFD = Góc AKC = 90 độ (gt)

=>   Tam giác AFD đồng dạng tam giác AKC (gg)

=>   \(\frac{AF}{AD}=\frac{AK}{AC}\)

=>   \(AF.AC=AK.AD\)      (ĐPCM)

b) Do ABCD là hình bình hành (gt)

=>   Góc DAF  = Góc BCE (2 góc SLT)

Xét tam giác ADF và tam giác CBE có:

+ DAF  = BCE (cmt)

+ AFD = BEC = 90 độ (gt)

=> Tam giác ADF đồng dạng tam giác BCE (gg)

=>  góc ADF = góc CBE

Xét tam giác ADF và tam giác CBE có:

*AD=BC (Do ABCD là hình bình hành)

*DAF = BCE (cmt)

*ADF = CBE (cmt)

=> Tam giác ADF  =  Tam giác CBE (gcg)

=> \(DF=BE\)       (1)

Có:  DF và BE cùng vuông góc với AC (gt)

=> DF // BE                 (2)

TỪ (1) VÀ (2) =>   Tứ giác BEDF là hình bình hành.

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

a) 

$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$

Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:

\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$

\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$

Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$

c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.

Ta có:

\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$

Mặt khác:

$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$

$=2\widehat{IDH}+2\widehat{CDI}$

$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$

$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$

$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$

Từ $(1);(2)$ suy ra đpcm.

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Hình vẽ:

19 tháng 5 2018

17 tháng 3 2022

a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)

\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)

DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.

b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)

c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)

△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)

\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)