b) d song song với đường thẳng d' y =3x+1 và đi qua điểm M(-2;2) c) d huống góc với đường thẳng đó y= 1/3x+3 và cắt đường thẳng y=2x+1 tại điểm có tung độ bằng 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Suy ra: (d): y=3x+b
Thay x=2 và y=-2 vào (d), ta được:
\(3\cdot2+b=-2\)
\(\Leftrightarrow b=-8\)(thỏa ĐK)
Vậy: (d): y=3x-8
b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)
hay \(a=-\dfrac{1}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+b\)
Thay x=-3 và y=4 vào (d), ta được:
\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)
\(\Leftrightarrow b+\dfrac{3}{2}=4\)
hay \(b=\dfrac{5}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d // d’ nên a = 3 b ≠ 1 ⇒ d: y = 3 x + b
Thay tọa độ điểm M vào phương trình đường thẳng d ta được:
3 . ( − 2 ) + b = 2 ⇒ b = 8 (thỏa mãn)
Vậy phương trình đường thẳng d: y = 3 x + 8
Đáp án cần chọn là: B
1: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)
2: Vì (d)//y=-3x+2 nên a=-3
Vậy: y=-3x+b
Thay x=3 và y=3 vào y=-3x+b, ta được:
b-9=3
hay b=12
a: (d) vuông góc (d1)
=>a*(-1/2)=-1
=>a=2
=>(d): y=2x+b
Thay x=-2 và y=5 vào (d), ta được:
b-4=5
=>b=9
b:
Sửa đề: (d1): y=-3x+4
Tọa độ giao của (d2) và (d3) là:
3x-7/2=2x-3 và y=2x-3
=>x=1/2 và y=1-3=-2
(d)//(d1)
=>(d): y=-3x+b
Thay x=1/2 và y=-2 vào (d), ta được:
b-3/2=-2
=>b=1/2
=>y=-3x+1/2
Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)
a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)
Còn lại tương tự.
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)
Để N là điểm cố định thỏa mãn thì
\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.
Vậy không có điểm cố định.
y = ax + b (d)
Vì đường thẳng (d) đi qua A(2;2) => x = 2 ; y = 2
Thay x = 2 ; y = 2 vào đường thẳng (d) ta được:
\(2=2a+b\)
\(\Rightarrow b=2-2a\)(1)
Vì đường thẳng (d) đi qua B(1;3) => x = 1 ; y = 3
Thay x = 1 ; y = 3 vào đường thẳng (d) ta được:
\(3=a+b\)
\(\Rightarrow a+b=3\)(2)
Thế (1) vào (2) ta được:
\(a+2-2a=3\)
\(\Rightarrow a=-1\)
Thay a = -1 vào (2) ta được: \(a+b=3\Rightarrow-1+b=3\Rightarrow b=4\)
=>Phương trình đường thẳng (d) có dạng y = -x + 4
\(a,\Leftrightarrow\left\{{}\begin{matrix}a=3;b\ne1\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\B\left(-2;0\right)\inđths\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1;b\ne-5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)