2x=3y;5y=7z va 3x+5Z-7Y=30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x=3y=2z
=>x/6=y/2=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot2+4\cdot3}=\dfrac{48}{18}=\dfrac{8}{3}\)
=>x=48/3=16; y=16/3; z=8
2: 2x=3y=4z
=>x/6=y/4=z/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot6-3\cdot4+4\cdot3}=\dfrac{48}{12}=4\)
=>x=24; y=16; z=12
\(\left(2x+3y\right)\left(2x-3y\right)-\left(2x-1\right)^2+\left(3y-1\right)^2\)
\(=4x^2-9y^2-4x^2+4x-1+9y^2-6y+1=4x-6y\)
Thay x = 1 ; y = -1 ta được :
\(4+6=10\)
2x+\(\dfrac{1}{5}\) = 3y - \(\dfrac{2}{7}\) = 2x+3y -\(\dfrac{1}{6x}\) và 2x + 3y - z =50
có phải đề như này ko
\(x=3y=2z\)
\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)
Rồi thế vào là ra thôi :
\(\frac{2x}{2}=6\Rightarrow x=..........\)
Rồi tương tự thôi
6)
\(x=3y=2z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)
\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)
7)
\(2x=3y=-2z\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)
a: 2x-3y=1 và -x+4y=7
=>2x-3y=1 và -2x+8y=14
=>5y=15 và 2x-3y=1
=>y=3 và 2x=1+3y=10
=>x=5 và y=3
b; x+3y=7 và 2x-3y=8
=>3x=15 và 2x-3y=8
=>x=5 và 3y=2x-8=2*5-8=10-8=2
=>x=5 và y=2/3
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x+3y-5z}{10+12-15}=\dfrac{2x-3y+5z}{10-12+15}\\ \Rightarrow A=\dfrac{10+12-15}{10-12+15}=\dfrac{7}{13}\)
a, \(\left(3+2x\right)^2=9+12x+4x^2\)
b, \(\left(3x-2y\right)^2=9x^2-12xy-4y^2\)
c, \(\left(2x-3y\right)\left(2x+3y\right)=4x^2+6xy-6xy-9y^2=4x^2-9y^2\)
d, \(\left(2x+3y\right)^3=8x^3+36x^2y+54xy^2+27y^3\)
( 3 + 2x )2 = 32 + 2.3.2x + ( 2x )2 = 4x2 + 12x + 9
( 3x - 2y )2 = ( 3x )2 - 2.3x.2y + ( 2y )2 = 9x2 - 12xy + 4y2
( 2x - 3y )( 2x + 3y ) = ( 2x )2 - ( 3y )2 = 4x2 - 9y2
( 2x + 3y )3 = ( 2x )3 + 3( 2x )2.3y + 3.2x.( 3y )2 + ( 3y )3 = 8x3 + 36x2y + 54xy2 + 27y3
Theo bài ra ta có :
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{3}=\dfrac{7y}{14}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)
\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{2y}{14}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x+5z-7y}{63+50-98}=\dfrac{30}{15}=2\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=2\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\\\dfrac{7y}{98}=2\Rightarrow\dfrac{y}{14}=2\Rightarrow y=28\\\dfrac{5z}{50}=2\Rightarrow\dfrac{z}{10}=2\Rightarrow z=20\end{matrix}\right.\\ \)
\(\text{Vậy }x=42\\ y=28\\ z=20\)
Ta có:
\(2x=3y\Rightarrow10x=15y\)
\(5y=7z\Rightarrow15y=21z\)
\(\Rightarrow10x=15y=21z\Rightarrow\dfrac{10x}{210}=\dfrac{15y}{210}=\dfrac{21z}{210}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x+5z-7y}{3.21+5.14-7.10}\)
\(=\dfrac{30}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{21}.21=10\\y=\dfrac{10}{21}.14=\dfrac{20}{3}\\z=\dfrac{10}{21}.10=\dfrac{100}{21}\end{matrix}\right.\)
Chúc bạn học tốt!!!