Cho tam giác ABC có s;= 1, ba đường trung tuyến AM, BE, CF. Tính diện tích của tam giác có độ dài các cạnh bằng AM, BE, CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{BC}{DC}=\frac{27}{9}=3\)( vì tam giác ABC và tam giác ADC có chung đường cao kẻ từ đỉnh A)
=> \(\frac{S_{ABC}}{36}=3\)
SABC=3x36=108(cm2)
Đáp số: 108 cm2
a) Ta có:
AH = BC : 4 = 24 : 4 = 6 (cm)
Diện tích ∆ABC:
24 . 6 : 2 = 72 (cm²)
b) Do D ∈ BC
AH ⊥ BC
⇒ AH ⊥ BD
Ta có:
BD = BC : 3 = 24 : 3 = 8 (cm)
Diện tích ∆ABD:
8 . 6 : 2 = 24 (cm²)
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Bài giải
Độ dài đáy tam giác $ABC$ là:
$1200\times2:24=100(cm)$
Chu vi tam giác $ABC$ là:
$100+100+100=300(cm)$
Đáp số: $300cm$
Độ dài cạnh đáy BC là:
1200 x 2 : 24=100(cm)
Chu vi hình tam giác là:
100+100+100=300(cm)
Đáp số:300cm
Bài 2:
\(\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{8}{12}=\dfrac{2}{3}\)
=>\(\dfrac{BM}{BC}=\dfrac{2}{3}\)
=>\(BM=\dfrac{2}{3}\cdot BC=\dfrac{2}{3}\cdot24=16\left(cm\right)\)
Ta có: BM+MC=BC
=>MC+16=24
=>MC=8(cm)