Cho (O;AB=2R). Gọi Cho là trung điểm của OA; qua C kẻ đường thẳng vuông góc với OA cắt đường tròn tại 2 điểm phân biệt M và N . Trên cung nhỏ BM lấy điểm K ( K khác B và M) trên tia KN lấy điểm I sao cho KI=KM. Gọi H là giáo điểm của AK và MN. Chứng minh rằng:
1. Tứgiác BCHK nội tiếp
2.AK.AH=R^2
3. NI=BK
a.
Góc AKB là góc nội tiếp chắn nửa (O) nên ∠AKB=90o∠AKB=90o
Khi này dễ dàng có đpcm
b.
Do C là trung điểm OA nên AC=OA2=R2AC=OA2=R2
Tứ giác BCHK nội tiếp nên chứng minh được △AHC∼△ABK△AHC∼△ABK
Từ đó: ACAK=AHAB⇒AH.AK=AC.AB=R2.2R=R2ACAK=AHAB⇒AH.AK=AC.AB=R2.2R=R2
c.
Lấy điểm E trên tia đối của BK sao cho KE=KM=KI
Chứng minh được tam giác AMO đều (có 3 cạnh = nhau) khi đó ∠MAB=60o∠MAB=60o
Dễ dàng chứng minh được tứ giác ABKM nội tiếp nên ∠MKE=∠MAB=60o∠MKE=∠MAB=60o
khi đó tam giác MKE đều nên ME = MK(1)
Có ∠CMB=∠MAB=6oo∠CMB=∠MAB=6oo (hai góc cùng phụ với góc AMC) nên
∠MNK=∠BME(2)∠MNK=∠BME(2)
Góc CMB=60oCMB=60o nên MB=2MCMB=2MC mà MN=2MCMN=2MC nên MN=MB(3)MN=MB(3)
Từ (1),(2) và (3) nên △NMK=△BME△NMK=△BME nên NK=BENK=BE hay NI+IK=BK+KINI+IK=BK+KI từ đó có đpcm
Hình gửi kèm
cần gắp ko bn êi