Cho tam giác ABC vuông ở A có các cạnh AB = 6cm ; AC = 8cm , BC = 10cm và ba nửa hình tròn có đường kính lần lượt là AB ; AC và BC . Hỏi phần gạch chéo có diện tích là bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì trong tam giác vuông tại A nên =>AB=AC;B=C
vì AB=AC(cmt)=>AC=6cm
còn BC thì thì tui chịu
TK:
Định lí pi-ta-go
Ta giác ABC vuông tại A=> AB và AC là cạnh góc vuông còn BC là cạnh huyền
=>AB2+AC2=BC2
hay 62+82=BC2
=>100=BC2
=>BC2=102
=>BC=10cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=\left(BC-CH\right)BC\)
\(\Rightarrow36=\left(7,5-CH\right)7,5=56,25-7,5CH\)
\(\Leftrightarrow CH=\dfrac{27}{10}\)cm
a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:
∠B chung
⇒ ∆ABC ∽ ∆HBA (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pytago)
= 6² + 8²
= 100
⇒ BC = 10
Do ∆ABC ∽ ∆HBA (cmt)
⇒ AC/AH = BC/AB
⇒ AH = AB.AC/BC
= 6.8/10
= 4,8 (cm)
∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ BH² = AB² - AH²
= 6² - (4,8)²
= 12,96
⇒ BH = 3,6 (cm)
a) Ta có:
- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.
- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.
- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).
b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:
- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.
- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.
- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.
Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.
a) Ta có AB^2+AC^2=6^2+8^2=100=10^2=BC^2
Vậy tam giác ABC vuông b)theo mình thì chứng minh da=de mới đúng
Xét tam giác BAD và tam giác BED có ^BAD=^BED(=90 độ)
Cạnh BD chung ^ABD=^DBE( hai tia phân giác )
Vậy tam giác BAD =tam giác BED =>AD=ED
Xét tam giác vuông abc tại a , có :
bc2 = ab2 + ac2 (ĐL Pytago)
bc2 = 62 +82 = 36 + 64
bc2 = 100
=> bc = \(\sqrt{100}\) = 10