K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

a

nAK.DNX. 0pwi9dOjkciopjopoijasd

2 tháng 2 2015

Ta có:

10A=1016+10/1016+1=1+​​(9/1016+1)

10B=1017+10/1017+1=1+(9/1017+1)

Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B

16 tháng 3 2018

Ta có :

\(A=\frac{10^{15}+1}{10^{16}+1}=\frac{\left(10^{15}+1\right).10}{\left(10^{16}+1\right).10}=\frac{10^{16}+10}{10^{17}+10}\)

\(\Rightarrow A=\frac{10^{16}+1+9}{10^{17}+1+9}\)

Vì \(\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}\)

Mà \(A=\frac{10^{16}+1+9}{10^{17}+1+9}\)nên \(A>B\)

Vậy \(A>B\)

19 tháng 3 2018

thank kiu bạn

9 tháng 5 2021
28 tháng 4 2016

nhân cả tử và mẫu của a cho 10 ta được A=10^2008/10^2009 (nhân cả tử và mẫu cho 1 số thì giá trị của A vẫn k đổi em nhé)

so sánh A=10^2008/10^2009 với B=10^2008/10^2009 vì cùng tử và 2 mẫu bằng nhau nên A=B

11 tháng 3 2021

Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).

26 tháng 1 2022

:D

 

27 tháng 4 2018

vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)

\(\Rightarrow A>B\)

27 tháng 4 2018

\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)

\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B