K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011  *(2011-1)= 2011^2011 *2010

B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010

vì 2011^2011*2010 < 2011^2012*2010 nên A<B

6 tháng 4 2016

Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013) 
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013) 
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)

9 tháng 4 2020

A=(2011x2011+1)/(2012x2011-2010)

=(2011x2011+1)/[(2011+1)x2011-2010]

=(2011x2011+1)/(2011x2011+1x2011-2010)

=(2011x2011+1)/(2011x2011+1)=1

A=1<2012/2011=B

nên A<B

5 tháng 4 2016

Đặt nhân tử chung rồi so sánh ta được B>A

7 tháng 4 2016

uccheV~thánh!!!! Chịu m lun

26 tháng 2 2020

Theo bài ra ta có :

\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) 

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)

\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)

Ta lại có :

\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)

\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)

Từ (1) và (2) => A < B

Vậy A < B

4 tháng 1 2022

lộn dấu xíu kìa

nhìn chung đúng rồi bạn ơi