CHO A=1+2+2^2+2^3+..+2^9;B=5.2^8.SO SÁNHA VÀ B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
Mặt khác:\(A>\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
Vậy \(\frac{8}{9}>A>\frac{2}{5}\)
Ta có :
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+.................+\dfrac{1}{9^2}\)
Xét :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{2^3}< \dfrac{1}{2.3}\)
..................................
\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...............+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}=\dfrac{8}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\rightarrowđpcm\) \(\left(1\right)\)
Xét :
\(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{2^3}>\dfrac{1}{3.4}\)
......................
\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+.............+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\rightarrowđpcm\)\(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\rightarrowđpcm\)
~ Chúc bn học tốt ~
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)
=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)
=>\(A>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
=>\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=>\(A>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
A=1+2+2^2+2^3+....+2^9
2A=2+2^2+2^3+....+2^10
2A-A=2^10-1
A=2^10-1/2
B=5.2^8=(2^2+1).2^8=2^10+2^8
=>B>A
2A = 2(1 + 2 + 22 + .... + 29 )
= 2 + 22 + 23 + ..... + 210
2A - A = (2 + 22 + 23 + ..... + 210) - (1 + 2 + 22 + .... + 29 )
A = 210 - 1
B = 5.28 = (22 + 1).28 = 210 + 28
210 - 1 < 210 + 28
=> A < B