Tìm a để A chia hết cho B:A=49x^2+a×x+b ;B=7x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét 12 ⋮3; 15⋮ 312 ⋮3; 15⋮ 3. Do đó:
a) Để A chia hết cho 3 thì x⋮ 3x⋮ 3. Vậy x có dạng: x = 3k (k∈N)(k∈N)
b) Để A không chia hết cho 3 thì x không chia hết cho 3. Vậy x có dạng: x = 3k + l hoặc
x = 3k + 2 (k∈N)(k∈N).
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
Bài 1: y=5; x=5
Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)
Bài 3:
a: *=5
b: *=0; *=9
c: *=9
A chia hết cho B
=>\(49x^2+ax+b⋮7x-1\)
=>\(49x^2-7x+\left(a+7\right)x-\dfrac{1}{7}\left(a+7\right)+b+\dfrac{1}{7}\left(a+7\right)⋮7x-1\)
=>\(7x\left(7x-1\right)+\dfrac{1}{7}\left(a+7\right)\left(7x-1\right)+b+\dfrac{1}{7}\left(a+7\right)=0\)
b+1/7(a+7)=0
=>(a+7)+7b=0
=>a=-7b-7
Vậy: Với a,b là các số nguyên sao cho a=-7b-7 thì A chia hết cho B