K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :

AB2 + AC2 = BC2

\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82 

\(\Rightarrow\)AC = 8 cm

theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )

b) Xét tam giác DAC và tam giác BAC có :

AB = AD ( gt )

\(\widehat{DAC}=\widehat{BAC}=90^o\)

AC ( cạnh chung )

\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )

\(\Rightarrow\)DC = BC

\(\Rightarrow\)tam giác DCB cân tại C

c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC

\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm  

d)  Nối A với Q.

Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)

Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)

\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA

Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M

Suy ra : 3 điểm B,M,Q thẳng hàng

27 tháng 4 2018

áp dụng định lí py-ta-go ta có

AB^2+AC^2=BC

=6^2+AC^2=10^2

12+AC^2=20

SUY RA AC=20-12=8 

CĂN BẬC 2 CỦA 8 LÀ 4

SUY RA AC=4

GÓC B <C<A

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

20 tháng 2 2022

minh dang can gap

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 2 2021

em cảm ơn ạ

 

16 tháng 2 2022

Ta có:

\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)

\(BC^2=10^2=100\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)

Áp dụng định lý Pytago đảo  ta có:

AB2+AC2=82+62=100

mà 102=100

⇒82+62=102hay AB2+AC2=BC2

vậy ABC là tam giác vuông tại A

23 tháng 3 2016

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

23 tháng 3 2016

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED