Cho tam giác BCD vuông tại B. BC=15 ; BD=20. BH vuông góc vs CD.
- Tính độ dài các đoạn thẳng CD,CH
- Gọi A là điểm sao cho tứ giác ABCD là hình thang cân có đáy là các cạnh AB;CD.Tính diện tích hình thang ABCD.
- Giải giúp mk nha .Đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AD=AC(gt)
mà A nằm giữa hai điểm C và D(gt)
nên A là trung điểm của CD
Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD_
BA là đường cao ứng với cạnh CD(BA⊥CA, D∈CA)
Do đó: ΔBCD cân tại B(Định lí tam giác cân)
Sửa đề: Góc B = 30 độ
----------------------------------------
a) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)
\(\Rightarrow\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
Xét ΔBAD và ΔBAC ta có:
AD = AC (GT)
Góc BAD = Góc BAC (= 900)
AB: canhj chung
=> ΔBAD = ΔBAC (c - g - c)
=> Góc C = Góc D (2 góc tương ứng)
=> Tam giác BDC cân tại B (1)
ΔABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{ABC}=90^0-30^0=60^0\left(2\right)\)
Từ (1) và (2) => Tam giác BDC đều
b) Tam giác BDC đều
=> BC = CD
Mà: CD = 2. AC
=> BC = 2.AC
a: Xét ΔCBA vuông tại B và ΔCHA vuông tại H có
CA chung
\(\widehat{BCA}=\widehat{HCA}\)
Do đó: ΔCBA=ΔCHA
Suy ra: BA=HA
b: Xét ΔBAE vuông tại B và ΔHAD vuông tại H có
BA=HA
\(\widehat{BAE}=\widehat{HAD}\)
Do đó: ΔBAE=ΔHAD
a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều
b) Dùng kết quả câu a, ta có BC = CD = 2AC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm
a) Xét hai tam giác vuông: ∆ABH và ∆DBH có:
AH = DH (gt)
BH là cạnh chung
⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)
b) Sửa đề: Chứng minh ∠BDC = 90⁰
Do ∆ABH = ∆DBH (cmt)
⇒ ∠ABH = ∠DBH (hai góc tương ứng)
AB = BD (hai cạnh tương ứng)
Do ∠ABH = ∠DBH (cmt)
⇒ ∠ABC = ∠DBC
Xét ∆ABC và ∆DBC có:
AB = BD (cmt)
∠ABC = ∠DBC (cmt)
BC là cạnh chung
⇒ ∆ABC = ∆DBC (c-g-c)
⇒ ∠BAC = ∠BDC = 90⁰
Vậy ∠BDC = 90⁰
Theo định lý pytago =>DC=\(\sqrt{CB^2+DB^2}\)=\(\sqrt{15^2+20^2}\)=25
\(\widehat{HBD}\)+ \(\widehat{D}\)=900 \(\widehat{C}\)+\(\widehat{D}\)=900 => \(\widehat{C}\)=\(\widehat{HBD}\) =>\(\Delta\)HBD~\(\Delta\)BCD(gg)
=>\(\frac{HB}{BC}\)=\(\frac{HD}{BD}\)<=> \(\frac{HB}{15}\)=\(\frac{HD}{20}\)(1) Mặt khác: BC*BD=CD*BH=>BH=15*20/25=12
Thay vào (1) =>HD=12/15 *20=16 =>HC =9
ABCD là hình thang cân=> BH cũng chính là đường cao của hình thang
Đáy nhỏ AB dài là: 25 - 9 - 9 =7
Diện tích hình thang ABCD là:(7+25)*12/2=192(dvdt)