Cho hình bình hành ABCD có AD=8cm;BD=7,5cm .Diện tích hình bình hành ABCD là..........
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ DH ^ AB tại H
⇒ A H = A D 2 = 4 c m
Áp dụng định lý Pytago trong D vuông ADH Þ DH = 4 3 cm.
ÞSABCD = DH.AB = 120cm2
\(S_{ABCD}=AB\cdot DH=8\cdot\left(30-10\right)=8\cdot20=160\left(cm^2\right)\)
Vẽ đường cao AH của hình bình hành ABCD (H thuộc CD)
Tam giác AHD vuông tại H có góc D = 30o => tam giác AHD là nửa tam giác đều cạnh AD
=> 2AH=AD
<=> AH=AD/2=8/2=4(cm)
=> SABCD=CD.AH=7,5.4=30(cm2)
Xét ΔABD có
\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2\cdot AB\cdot AD}\)
=>\(8^2+6^2-BD^2=2\cdot8\cdot6\cdot cos60=48\)
=>\(BD^2=100-48=52\)
=>\(BD=2\sqrt{13}\left(cm\right)\)
Xét ΔBAC có \(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(8^2+6^2-AC^2=2\cdot8\cdot6\cdot cos120=-48\)
=>\(AC^2=148\)
=>\(AC=2\sqrt{37}\left(cm\right)\)
Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
Xét tam giác AID có: A I 2 + I D 2 = A D 2 ( 3 2 + 4 2 = 5 2 = 25 )
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Chọn đáp án B