Cho 4 điểm A;B;C;D thẳng hàng theo thứ tự đó. Biết AB=CD=3 cm và BC= 5 cm. Chứng minh rằng
a) AC=BD
b) Trung diểm I của BC cũng là trung điểm AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì OA và OB là hai tia đối nhau
nên điểm O nằm giữa hai điểm A và B
mà OA=OB
nên O là trung điểm của AB
b: Để C là trung điểm của OB thì OC=OB
hay a=4(cm)
a: Vì OA và OB là hai tia đối nhau
nên điểm O nằm giữa hai điểm A và B
mà OA=OB
nên O là trung điểm của AB
b: Để C là trung điểm của OB thì OC=OB
hay a=4(cm)
Chọn 1 trong 4 điểm ta vẽ được 3 đường thẳng đi qua 2 điểm
Cứ làm như thế với 4 điểm đó ta vẽ được : 4.3=12 đường thẳng
Vì mỗi đường thẳng được tính 2 lần
=> Số đường thẳng được tạo thành là 12:2=6
Ta có: \(\overrightarrow {AD} \left( { - 2;10} \right),{\mkern 1mu} \overrightarrow {AB} \left( { - 1;5} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AB} \)
\(\Rightarrow\) 3 điểm \(A,B,D\) thẳng hàng.