K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: góc DEB+góc CBA=45+45=90 độ

=>DE vuông góc BC tại H

c: Sửa đề: H là giao của DE với BC

Xét ΔHEB vuông tại H có góc HEB=45 độ

nên ΔHEB vuông cân tại H

=>HE=HB

Bài 8:

a: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE
Do đó:ΔABD=ΔACE

Suy ra: AD=AE

b: ta có: ΔABD=ΔACE

nên \(\widehat{ADB}=\widehat{AEC}\)

23 tháng 1 2022

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ

góc DAH+góc BDA=90độ

góc BAD=góc BDA

=>góc MAD=góc HAD

Xét ΔAHD và ΔAMD có

AH=AM

góc HAD=góc MAD

AD chung

=>ΔAHD=ΔAMD

=>góc AMD=90 độ

Xét ΔAMN vuông tại M và ΔAHC vuông tại H có

AM=AH

góc MAN chung

=>ΔAMN=ΔAHC

=>AN=AC

=>ΔANC cân tại A

11 tháng 3 2019

A B C H D E

Ta có:

AB=AD

=> tam giác BDA cân tại B

=> \(\widehat{BAD}=\widehat{BDA}\)(1)

Ta lại có: \(\widehat{BDA}+\widehat{HAD}=90^o,\widehat{BAD}+\widehat{DAE}=90^o\)(2)

Từ (1) và (2) ta suy ra: \(\widehat{HAD}=\widehat{DAE}\)

Xét tam giác HAD và tam giác EAD có:

\(\widehat{HAD}=\widehat{DAE}\)( chứng minh trên)

AH=AE (gt)

AD chung 

Suy ra tam giác HAD và tam giác EAD

=> \(\widehat{AHD}=\widehat{ADE}\)

như vậy DE vuông AC

b) Ta có: BD+AH =BA+AE < BA+AC vì (AH=AE, BD=AB, E<AC) 

Em xem lại đề bài nhé