K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

Bài 1 : 

Xét tam giác MNP vuông tại M, đường cao MH 

* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm 

=> NP = HN + HP = 4 + 9 = 13 cm 

* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm

16 tháng 9 2021

Bài 2 : 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm 

( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé ) 

* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm 

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm 

4 tháng 5 2022

Xét tam giác HNM và tam giác NMP, có:

^N: chung

^NHM = ^ NMP = 90 độ

Vậy tam giác NHM đồng dạng tam giác NMP (g.g )

\(\Rightarrow\dfrac{NM}{NP}=\dfrac{MH}{MP}\) (1)

Áp dụng định lý pitago \(NP=\sqrt{12^2+16^2}=20cm\)

(1)\(\rightarrow\dfrac{12}{20}=\dfrac{MH}{16}\)

\(MH=\dfrac{12.16}{20}=9,6cm\)

4 tháng 5 2022

tg HNM∼tgNMP             mới đúng

6:

a: AB^2=BH*BC

=>BH(BH+6,4)=6^2

=>BH=3,6cm

b: AC=căn 6,4*10=8cm

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

Do đó: ΔHNM\(\sim\)ΔMNP

b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)

\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)

=>HP=6,4(cm)

8 tháng 4 2021

a) Xét ΔMNP và ΔHMP có:

Góc MPN chung

Góc  NMP = góc MHP (= \(90^o\))

⇒ ΔMNP ~ ΔHMP (g.g)

b) Áp dụng định lí Pytago vào Δ vuông MNP:

\(MP^2=NP^2-MN^2\)

\(MP^2=10^2-6^2\)

\(MP^2=64\)

⇒ MP = 8

Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\) 

hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5