Cho\(\Delta\)ABC có AB=AC.Gọi E;F lần lượt là các điểm trên AB,AC sao cho AE=AF
a)Chứng minh BF=CE (0,5đ)
b)Gọi I là giao điểm của BF và CE
Chứng minh\(\Delta\)BIE=\(\Delta\)CIF (0,5đ)
c)Chứng minh AI là phân giác của\(\stackrel\frown{BAC}\) (0,5đ)
d)Kéo dài AI cắt BC tại H
Chứng minh AH\(\perp\)BC (0,5đ)
e)Chứng minh EF//BC (0,5đ)
Vẽ hình ghi giả thiết kết luận (0,5đ)
a: Xét ΔABF và ΔACE có
AB=AC
\(\widehat{A}\) chung
AF=AE
Do đó: ΔABF=ΔACE