cho tam giác ABC vuông tại A đường cao AH,HB=20 cm;HC=45cm vẽ đường tròn tâm A bán kính AH kẻ tiếp tuyến BM ,CN với đường tròn a,chứng minh tứ giác AMBH nội tiếp b,Tính diện tích tứ giác BMNC c,gọi K là giao điểm của CN và HA tính KA
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
T
1
30 tháng 8 2021
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
NN
1
6 tháng 1 2023
Xét ΔABC vuông tại A có AH là đường cao
nên HB*HC=AH^2
=>2HB^2=16
=>HB^2=8
=>\(HB=2\sqrt{2}\left(cm\right)\)
NN
1
AH
Akai Haruma
Giáo viên
29 tháng 12 2022
Lời giải:
$BC=BH+CH=25+64=89$ (cm)
Áp dụng công thức hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH=25.64\Rightarrow AH=40$ (cm)
Diện tích tam giác $ABC$ là: $AH.BC:2=40.89:2=1780$ (cm2)
NH
0