K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

Chọn B

16 tháng 7 2017

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI. Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. => IK= KH= x( x>0) Xét tam giác ABH vuông tại A=> AH2= HK x BH <=> AH2= x(2x+3). Mà AH= 2 căn 5 => x(2x+3)= 20=>x=2.5 Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

Tự vẽ hình nha

giải 

Kẻ AH vuông góc với AB tại A ( AH thuộc BI ) kẻ AK vuông góc với BI

Tự chứng minh tam giác AIH cân tại A => AH = AI = 2 căn 5

                                                              => IK = KH = x ( x > 0 )

Xét tam giác ABH vuông tại A => AH2  = HK x BH

                                                 => AH2 = x ( 2x + 3 ) mà AH = 2 căn 5

=> x ( 2x + 3 ) = 20 => x = 2.5

Có AB2 = BH x BK = ( 3 + x )( 3 + 2x )=44 => AB = 2 căn 11

Hok tốt ^^

I là giao của 3 đường phân giác

=>AI là phân giác của góc BAC

mà ΔABC cân tại A

nên AI là trung tuyến của ΔBCA

7 tháng 3 2022

giúp em với ạ

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: AF=EC

c: Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

hay ΔBFC cân tại B

a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có

IB=IC

góc B=góc C

=>ΔIBH=ΔICK

b: ΔABC cân tại A

mà AI là đường cao

nên AI là phân giác

c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

HI=KI

=>ΔAHI=ΔAKI

=>AH=AK

d: IK=IH

IH<IB

=>IK<IB

1: Xét ΔCDB có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCDB cân tại C

mà CA là đường trung tuyến

nên CA là tia phân giác của góc BCD

2: Xét ΔCEI vuông tại E và ΔCFI vuông tại F có

CI chung

\(\widehat{ECI}=\widehat{FCI}\)

Do đó:ΔCEI=ΔCFI

Suy ra: CE=CF

hay ΔCEF cân tại C

Xét ΔCDB có

CE/CD=CF/CB

nên EF//DB

3: Ta có: ΔCEI=ΔCFI

nên IE=IF

mà IF<IB

nên IE<IB

4: Xét ΔCDB có

CA là đường cao

BE là đường cao

CA cắt BE tại I

Do đó: I là trực tâm của ΔCDB

=>DI⊥CB

mà IF⊥CB

nên DI,FI có điểm chung là I

nên D,I,F thẳng hàng

16 tháng 7 2017

Tự vẽ hình, mình không quen sử dụng cách vẽ hình ở đây.

Giải

Kẻ AH vuông góc với AB tại A( AH thuộc BI). Kẻ AK vuông góc với BI.

Tự chứng minh tam giác AIH cân tại A => AH=AI = 2 căn 5. 

                                                             => IK= KH= x( x>0)

Xét tam giác ABH vuông tại A=> AH2= HK x BH

                                              <=> AH2= x(2x+3). Mà AH= 2 căn 5

=>  x(2x+3)= 20=>x=2.5   

Có AB2= BH.BK= (3+x)(3+2x)=44 => AB= 2 căn 11

              k nha