Cho hình bình hành ABCD có CD=2AD;N,M lần lượt là trung diểm các cạnh AB, CD
a) Tứ giác BMDN là hình gì? vì sao ?
b)Gọi giao điểm của BM,DN vs AC lần lượt là H,K. Chứng minh Ch = 1/3 AC
c) Tìm điều kiện của hình bình hành ABCD để BMDN là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Hình chữ nhật EMFN là hình thoi ⇒ ME = MF
ME = 1/2 DE (tính chất hình thoi)
MF = 1/2 AF (tính chất hình thoi)
Suy ra: DE = AF
⇒ Tứ giác AEFD là hình vuông (vì hình thoi có 2 đường chéo bằng nhau)
⇒ ∠ A = 90 0 ⇒ Hình bình hành ABCD là hình chữ nhật.
Ngược lại: ABCD là hình chữ nhật ⇒ ∠ A = 90 0
Hình thoi AEFD có ∠ A = 90 0 nên AEFD là hình vuông
⇒ AF = DE ⇒ ME = MF (tính chất hình vuông)
Hình chữ nhật EMFN là hình vuông (vì có 2 cạnh kề bằng nhau)
Vậy hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật có AB = 2AD.
Vì `E` là trung điểm `CD` nên `CE = ED = AB = AD`.
Vì `AB //// CD => AB //// ED`.
Và `AB = ED => ABED` là hình bình hành.
* Xét tứ giác AEFD, ta có:
AB // CD (gt) hay AE // FD
AE = 1/2 AB (gt)
FD = 1/2 CD (gt)
Suy ra: AE = FD
Tứ giác AEFD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
AD = AE = 1/2 AB . Vậy tứ giác AEFD là hình thoi.
* Xét tứ giác AECF, ta có: AE // CF (gt)
AE = 1/2 AB (gt)
CF = 1/2 CD (gt)
Suy ra: AE = CF
Tứ giác AECF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
+) Vì ABCD là hình bình hành
=> AB // CD và AB = CD
hay AE // DF và AE = DF
=> AEFD là hình bình hành
+) Vì ABCD là hình bình hành
=> AE // FC và AE = FC
=> AECF là hình bình hành
Ta có:
\(E\) là trung điểm của \(AB\left(gt\right)\) nên \(EA=EB=\frac{1}{2}AB\)
\(F\) là trung điểm của \(CD\left(gt\right)\) nên \(FC=FD=\frac{1}{2}CD\)
Mà \(AB=CD\) (cạnh đối hình bình hành \(ABCD\) )
nên \(EA=FD\) \(\left(1\right)\)
Vì \(AB\text{//CD}\) (theo tính chất cạnh đối hình bình hành \(ABCD\) ) nên \(EA\text{//FD}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra, tứ giác \(AEFD\) là hình bình hành \(\left(3\right)\)
Lại có:
\(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\)
Do đó: \(EA=AD\left(=\frac{1}{2}AB\right)\) \(\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\) suy ra, \(AEFD\) là hình thoi.