Từ điểm K ở ngoài đường tròn (O ;R) kẻ hai tiếp tuyến KB ,KD đến đường tròn và cát tuyến KAC không đi qua O (A nằm giữa K và C) a) Chứng minh KD.KD = KA.KC b) Chứng minh AB.AC = AD BC c) Gọi I là trung điểm của BD, chứng minh tứ giác AIOC nội tiếp d) Kẻ dây Cn song song với BD. Chứng minh ba điểm A,I,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác MIOK có
\(\widehat{MIO}+\widehat{MKO}=90^0+90^0=180^0\)
=>MIOK là tứ giác nội tiếp
=>M,I,O,K cùng thuộc một đường tròn
lấy A là trung điểm của OM,xét tam giác OMI có:
A là trung điểm của OM
O,M,I thuộc 1 đường tròn. (1)
Xét tam giác OMK có A là trung điểm của OM
O,M,K thuộc 1 đường tròn (2)
từ (1) và (2) suy ra 4 điểm M,I,O,K cùng thuộc 1 đường tròn
Do EI là tiếp tuyến của (O) tại I
⇒ EI OI
⇒ ∆OEI vuông tại I
⇒ O, E, I cùng thuộc đường tròn đường kính OE (1)
Do EK là tiếp tuyến của (O) tại K
⇒ EK OK
⇒ ∆OEK vuông tại K
⇒ O, E, K cùng thuộc đường tròn đường kính OE (2)
Từ (1) và (2) suy ra E, I, O, K cùng thuộc đường tròn đường kính OE
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
Lời giải:
Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.
$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)
Mặt khác:
Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.
$\Rightarrow \widehat{MKO}=90^0$
Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.
$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.
a: Xét tứ giác KBOD có
\(\widehat{OBK}+\widehat{ODK}=180^0\)
=>KBOD là tứ giác nội tiếp
b: Xét (O) có
KB,KD là tiếp tuyến
=>KB=KD
mà OB=OD
nên OK là trung trực của BD
=>OK cắt BD tại trung điểm của BD
=>O,I,K thẳng hàng và OK\(\perp\)BD tại I
Xét ΔKBA và ΔKCB có
\(\widehat{KBA}=\widehat{KCB}\)
\(\widehat{BKA}\) chung
Do đó: ΔKBA đồng dạng với ΔKCB
=>KB/KC=KA/KB
=>\(KB^2=KA\cdot KC\)(1)
Xét ΔKBO vuông tại B có BI là đường cao
nên \(KI\cdot KO=KB^2\left(2\right)\)
Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)