cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R). hai đường cao BE, CF cắt nhau tại H
a. cm. tứ giác BFEC nội tiếp
b.hai đường thẳng BE, CF cắt (O) lần lượt tại P và Q. cm ˆBPQ=ˆBCQ
c.cm EF//QP
d, cm OA vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
\(a,\widehat{ACM}=90^0\) (góc nt chắn nửa đg tròn)
\(b,\widehat{BAH}+\widehat{ABH}=90^0;\widehat{OAC}+\widehat{AMC}=90^0\left(\widehat{ACM}=90^0\right)\)
Mà \(\widehat{ABH}=\widehat{AMC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\)
Do đó \(\widehat{BAH}=\widehat{OAC}\)
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
Bạn tự vẽ hình nha ^-^
a, Xét tứ giác BFEC có:
BFC=BEC =90 mà 2 góc này cùng nhìn cạnh BC
nên tứ giác BFEC nội tiếp
b,Ta thấy
BPQ= 1/2 cung BQ
BCQ=1/2 cung BQ
nên BPQ=BCQ
c,Tứ giác BFEC nội tiếp nên EBC=EFC (cùng nhìn cạnh EC)
và PBC=PQC (góc nội tiếp cùng chắn cung PC)
nên CFE=CQP (=PBC)
mà 2 góc ở vị trí đồng vị nên EF//QP
d, Kéo dài OA cắt đường tròn (O,R) tại I
ta có :AEF=ABC=1/2 cung AC
IAC =1/2 cung IC
nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90
vậy AO vuông góc với EF
a, Xét tứ giác BFEC có:
BFC=BEC =90 mà 2 góc này cùng nhìn cạnh BC
nên tứ giác BFEC nội tiếp
b,Ta thấy
BPQ= 1/2 cung BQ
BCQ=1/2 cung BQ
nên BPQ=BCQ
c,Tứ giác BFEC nội tiếp nên EBC=EFC (cùng nhìn cạnh EC)
và PBC=PQC (góc nội tiếp cùng chắn cung PC)
nên CFE=CQP (=PBC)
mà 2 góc ở vị trí đồng vị nên EF//QP
d, Kéo dài OA cắt đường tròn (O,R) tại I
ta có :AEF=ABC=1/2 cung AC
IAC =1/2 cung IC
nên AEF+IAC=1/2(cung AC+cung IC)=1/2 cung AI=90
vậy AO vuông góc với EF