K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

\(x\left(y+3\right)=7y+2\)
\(\Leftrightarrow x=\frac{7y+2}{y+3}\)
\(\Leftrightarrow x=\frac{7\left(y+3\right)-19}{y+3}\)
\(\Leftrightarrow x=7-\frac{19}{y+3}\)
Do x nguyên nên y+3 phải là Ư(19)
Ta có bảng:
 

y+3-19-1119
y-22-4-216
x826-126


Vậy các cặp (x;y) là (8;-22);(26;-4);(-12;-2);(6;16)

20 tháng 2 2018

theo bài ra ta có

XY+3X-7Y=2

X x[Y+3]-7Y=2

X x[Y+3]-7Y-21=2-21

X x[Y+3]-[7Y+7x3]=-19

X x[Y+3]-7 x[Y+3]=-19

[X-7]x[Y+3]=-19

do X,Y thuoc Z nen ta co bang ia tri la:

X-7                1                     -1                     -19                  19

Y+3               -19                   19                      1                    -1

X                    8                       6                      -12                  26

Y                    -22                    16                     -2                    -4

20 tháng 6 2015

\(P=\frac{x-2}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)

P nguyên <=>3 chia hết cho x+1 <=>x+1 là Ư(3)

Mà Ư(3)={+-1;+-3}

Ta có bảng sau:

x+11-13-3
x0-22-4

Vậy x={-4;-2;0;2} thì P nguyên

20 tháng 6 2015

p​ nguyên <=> x-2=x+1-3 chia hết cho x+1 => 3 chia hết cho x+1 => x+1 thuộc Ư(3) =>x+1 thuộc {-3;-1;1;3} <=> x thuộc {-4;-2;0;2}

5 tháng 4 2023

\(x+xy+y=1\)

\(2x+2xy+2y=2\)

\(2x\left(1+y\right)+2y=2\)

\(2x\left(y+1\right)+2y+2=4\)

\(2x\left(y+1\right)+2\left(y+1\right)=4\)

\(\left(2x+2\right)\left(y+1\right)=4\)

\(2\left(x+1\right)\left(y+1\right)=4\)

\(\left(x+1\right)\left(y+1\right)=2\)

\(TH1:\left\{{}\begin{matrix}x+1=1\\y+1=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}x+1=2\\y+1=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

\(TH4:\left\{{}\begin{matrix}x+1=-2\\y+1=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

\(Vậy...\)

5 tháng 4 2023

x+xy+y=1⇔x(y+1)+y+1=2⇔(x+1)(y+1)=2

⇒(x+1;y+1)=(-1;-2),(-2;-1),(1;2),(2;1)

sau tự tính nhé :3

 xy = -(x+ y)

<=> xy+x+y=0

<=> x(y+1)+(y+1)=1

<=> (x+1)(y+1)=1

Lập bảng là ra

7 tháng 6 2019

lập hộ mik cái bảng

5 tháng 4 2018

Ta có: \(x-2xy=2\)

\(\Rightarrow x\left(1-2y\right)=2\)

Vì \(x,y\in Z\Rightarrow x;1-2y\in Z\)

\(\Rightarrow x;1-2y\inƯ\left(2\right)=\left(\pm1;\pm2\right)\)

Ta có bảng giá trị:

x12-1-2
1-2y21-2-1
y\(\varnothing\)0\(\varnothing\)1
C/LLCLC

Đối chiếu điều kiện \(x,y\inℤ\)\(\Rightarrow\left(x,y\right)=\left(1;0\right);\left(-1;1\right)\)

Nhớ k mình nhé.

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

11 tháng 12 2021

\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)

Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)

18 tháng 12 2017

|x - 7| + |y| = 2

Vì \(\hept{\begin{cases}\left|x-7\right|\ge0\\\left|y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-7\right|=x-7\\\left|y\right|=y\end{cases}}\)

Nên ta xét bảng sau

x - 7120
y102
x897
y102

Vậy (x;y) = (8;1) = (9;0) = (7;2)