Tìm x
a, \(x+3+\frac{4-3a^2}{a^2-9}=\frac{5}{2a^2+6a}\left(a\ne0;a\ne3\right).\)
b, \(\frac{a^2-2ab+b^2}{a^4-b^4}.x=\frac{a^2-b^2}{a^2+b^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi vế phải, ta có :\(\frac{-3x\left(x-y\right)}{y^2-x^2}=\frac{3x\left(x-y\right)}{x^2-y^2}=\frac{3x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{3x}{x+y}\) = vế trái \(\Rightarrowđpcm\)
c)Biến đổi vế phải ta có: \(\frac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=\frac{x+y}{3a}=vt\Rightarrowđpcm\)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)
b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)
c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)
d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)
2.
a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)
b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)
d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)
quy đồng mẫu số ta được
\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0
<=> a=-b hoăc a =2b
với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)
với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)