cho a,b,c,d thoả mãn a+b=c+d;a^2 + b^2=c^2 + d^2 CMR a^2013 + b^2013=c^2013 + d^2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b = b/c = c/d = (a+b+c)/(b+c+d)
=> (a+b+c/b+c+d)^6054 = (a/b)^6054
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Đặt A/B=C/D=k
=>A=k*B; C=D*k
A/B=k*B/B=k
\(\dfrac{A+C}{B+D}=\dfrac{k\cdot B+k\cdot D}{B+D}=k\)
=>\(\dfrac{A}{B}=\dfrac{A+C}{B+D}\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
doan thi khanh linh copy đáp án trong câu hỏi của bạn Dương Nguyễn Ngọc Khánh
Bài làm của mình:
Có a2 + b2 = c2 + d2
\(\Rightarrow\) a2 - c2 = d2 - b2
\(\Rightarrow\)(a-c)(a+c) = (d-b)(d+b)
Mà theo đề bài a + b = c + d
\(\Rightarrow\) a - c = d - b
Nếu a = c
\(\Rightarrow\) a - c = d - b = 0
\(\Rightarrow\) d = b
\(\Rightarrow\) a2013 = c2013 và d2013 = b2013
\(\Rightarrow\) a2013 + b2013 = c2013 + d2013
Tương tự với a \(\ne\) c
a+b=c+d
=> (a+b)2=(c+d)2
=> a2+2ab+b2=c2+2cd+d2
=>2ab=2cd
=> a2-2ab+b2=c2-2cd+d2
=> (a-b)2=(c-d)2
Th1: a-b=c-d
Mà a+b=c+d
=> a-b+a+b=c+d+c-d
=> 2a=2c => a=c=> b=d=> a2013+b2013= c2013+d2013 (1)
Th2: a-b=d-c
Mà a+b=c+d
=> a+b+a-b= c+d+d-c
=>2a=2d=>a=d=>b=c=> a2013+b2013=c2013+d2013(2)
Từ (1) và (2) => đpcm