Tìm 3 số a,b,c biết rằng a-b=c ;a+b+c=150 và c-b=51
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2)
\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)
Thay lại vào (1) ; (2) ta có :
\(\Leftrightarrow a=11-b=11-7=4\)
\(\Leftrightarrow c=3-b=3-7=-4\)
Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện )
a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)
\( \Rightarrow a=2.5=10;\\b=2.2=4\)
Vậy \(a = 10 ; b = 4\)
b) Vì a : b : c = 2 : 4 : 5
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)
\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)
Vậy \(a=6;b=12;c=15\).
a) Ta có: \(a+b=54\Rightarrow a=54-b\)
Thay vào \(a+c=45\) \(\Rightarrow54-b+c=45\)
Lại có: \(b+c=63\Rightarrow c=63-b\)
Thay vào \(54-b+c=45\Rightarrow54-b+63-b=45\)
Tìm được b:
\(\Rightarrow117-2\times b=45\)
\(\Rightarrow2\times b=117-45\)
\(\Rightarrow2\times b=72\)
\(\Rightarrow b=72:2=36\)
Sau khi tìm được b ta thay \(b=36\) vào \(a+b=54\)
Ta tìm được a:
\(a+36=54\)
\(\Rightarrow a=54-36\)
\(\Rightarrow a=18\)
Sau khi tìm được a ta thay \(a=18\) vào \(a+c=45\)
Ta tìm được c:
\(\Rightarrow18+c=45\)
\(\Rightarrow c=45-18\)
\(\Rightarrow c=27\)
Vậy 3 số a,b,c là \(18,36,27\)
a) Ta có hệ thống phương trình:
a + b = 54
b + c = 63
a + c = 45
The first method of the first method has been:
2a + b + c = 117
Trừ phương thức thứ ba ra khỏi phương thức trên ta được:
2a + b + c - (a + c) = 117 - 45
a + b = 72
Thay a + b = 72 vào phương trình đầu tiên ta được:
72 = 54
một = 18
Thay a = 18 vào phương trình a + b = 54 ta được:
18 + b = 54
b = 36
Thay a = 18 và b = 36 vào phương trình b + c = 63 ta được:
36 + c = 63
c = 27
Do đó a = 18, b = 36, c = 27.
b) Call number to find is xy, ta has:
10x + y + 20 + xy = 292
Rút gọn phương trình, ta được:
10x + y + xy = 272
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 8 và y = 4 thỏa mãn phương trình:
10(8) + 4 + 8(4) = 80 + 4 + 32 = 116
Vậy số đó là 84.
c) Call number to find is xy, ta has:
10x + y + 5 = xy + 428
Rút gọn phương trình, ta được:
10x + y - xy = 423
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 7 và y = 9 thỏa mãn phương trình:
10(7) + 9 - 7(9) = 70 + 9 - 63 = 16
Vậy số đó là 79.
d) Call hai số cần tìm là x và y, ta có:
(x + y)/2 = 45
y = 2x
Thay phương trình thứ hai vào phương trình thứ nhất, ta được:
(x + 2x)/2 = 45
3x/2 = 45
3x = 90
x = 30
Thay x = 30 vào phương trình thứ hai, ta được:
y = 2(30)
y = 60
Vậy hai số là 30 và 60.
a+b=11 => b= 11-a
c+a=2 => c=2-a
b+c= 3 nên 11-a +2-a= 3
11+2-2a=3
13-2a =3
13=3+2a
13-3=2a
10=2a => a=5
Vậy a=5
5+b=11 => b=11-5=6
Vậy b=6
c+5=2 => c=2-5= (-3)
Vậy c= -3
a=5.....b=6......c= -3......
Ta có : a + b + b + c + c + a = 11+ 3 + 2
<=> 2(a + b + c) = 16
<=> a + b + c = 8 => c = 8 - 11 = -3
=> a = 8 - 3 = 5
=> b = 8 - 2 = 6
Ta có: a+b+b+c+c+a=11+3+2
<=> 2(a+b+c)=16
<=> a+b+c=8 =>c=8-11=-3;a=8-3=5;b=8-2=6
=>a+b+b+c+c+a=11+3+2
=>2(a+b+c)=16
=>a+b+c=8
=>a=8-3=5
b=8-2=6
c=8-11=-3
Ta có: a+b+b+c+c+a=11+3+2
<=> 2(a+b+c)=16
<=> a+b+c=8 =>c=8-11=-3;a=8-3=5;b=8-2=6
Ta có a + b + b + c = 11 + 3
=> a + c + 2.b = 14
=> 2 + 2.b = 14
=> 2.b = 14 - 2
=> 2.b = 12
=> b = 12 : 2
=> b = 6
Ta có a + b = 11 => a = 11 - b = 11 - 6 = 5
Ta có b + c = 3 => c = 3 - 6 = -3
Theo đề bài, ta có:
a+b+c=150
Thay c=a-b, ta có
a+b+a-b=150
=>2a=150
=>a=75
=>b+c=75
=>b+c+c-b=75+51
=>2c=63
=>b=63-51=12
Vậy \(\hept{\begin{cases}a=75\\b=12\\c=63\end{cases}}\)
A=75
B=12
C=63