Tìm cấp số cộng \(a_1;a_2;a_3;a_4;a_5\) biết rằng :
\(a_1+a_3+a_5=-12\) và \(a_1a_3a_5=80\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Số hạng tổng quát của cấp số cộng \(\left(a_n\right)\) là:
\(a_n=a_1+\left(n-1\right)d=5+\left(n-1\right)\left(-5\right)=5-5n+5=10-5n\)
b, Giả sử cấp số cộng \(\left(b_n\right)\) có công sai d, ta có:
\(b_{10}=b_1+\left(10-1\right)d\\ \Leftrightarrow20=2+9d\\ \Leftrightarrow9d=18\\ \Leftrightarrow d=2\)
Vậy số hạng tổng quát của cấp số cộng \(\left(b_n\right)\) là:
\(b_n=b_1+\left(n-1\right)d=2+\left(n-1\right)\cdot2=2+2n-2=2n\)
Chọn A
Ta có:
u 4 = u 1 + 3 d u 14 = u 1 + 13 d
Suy ra chọn đáp án A.
Cấp số cộng có \(u_1=3\) ; \(d=4\)
\(\Rightarrow u_{10}=3+9.4=39\)
\(S_{20}=3.20+\dfrac{19.20}{2}.4=820\)
CSC có u1 = 3, d = 4
u10 = u1 + 9d = 3 + 9.4 = 39
S20=\(\dfrac{20}{2}\).(2.3 + 19.4) = 820
Đáp án A
Ta có
u 1 − u 3 = 6 u 5 = − 10 ⇔ u 1 − u 1 + 2 d = 6 u 1 + 4 d = − 10 ⇔ − 2 d = 6 u 1 = − 10 − 4 d ⇔ d = − 3 u 1 = 2 .
Vậy
u n = u 1 + n − 1 d = 2 − 3 n − 1 = 5 − 3 n .
Phương pháp
Sử dụng tính chất của cấp số cộng
u k = u k - 1 + u k + 1 2 tìm x
Tính công sai d và sử dụng công thức tìm số hạng thứ n là
u n = u 1 + ( n - 1 ) d
Cách giải:
Áp dụng tính chất các số hạng của cấp số cộng ta có
x = - 2 + 6 2 = 2
Suy ra d = u 2 - u 1 = 4
⇒ u 5 = u 1 + 4 d = 14
Chọn D
Tham khảo: