Cho tam giác ABC vuông tại A . Từ trung điểm E của cạnh AC kẻ EF vuông góc với AC tại F
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng : AC2 = 2CF.CB
c) Chứng minh : AF = BC.cosC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔCFE vuông tại F và ΔCAB vuông tại A có
\(\widehat{C}\)chung
Do đó: ΔCFE\(\sim\)ΔCAB
Suy ra: \(\dfrac{CF}{CA}=\dfrac{CE}{CB}\)
\(\Leftrightarrow CF\cdot CB=CE\cdot CA\)
\(\Leftrightarrow CF\cdot CB=CA\cdot\dfrac{1}{2}AC\)
\(\Leftrightarrow AC^2=2\cdot CF\cdot CB\)
a, Vì Tam giác `ABC` cân tại A `=> AB = AC ;`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `AMB` và Tam giác `AMC` có:
`AM chung`
\(\widehat{B}=\widehat{C}\) `(CMT)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `AMC (c-g-c)`
b, Vì Tam giác `AMB =` Tam giác `AMC (a)`
`=>` \(\widehat{EAM}=\widehat{FAM}\) (2 góc tương ứng).
Xét Tam giác `EAM` và Tam giác `FAM` có:
AM chung
\(\widehat{EAM}=\widehat{FAM}\) `(CMT)`
\(\widehat{AEM}=\widehat{AFM}=90^0\)
`=>` Tam giác `EAM =` Tam giác `FAM (ch-gn)`
`=> EA = FA` (2 cạnh tương ứng).
c, *câu này mình hơi bí bn ạ:')
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
Do đó: ΔAEM=ΔAFM
=>AE=AF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét ΔBED vuông tại E và ΔBAC vuông tại A có
góc B chung
=>ΔBED đồng dạng vơi ΔBAC
b: Xet ΔCAB co FD//AB
nên DB/DC=FA/FC
MK vẽ hình ko chính xac lam bn thông cảm hen!!!
a) Xét ΔABC,có: AB2 + AC2 = 162 + 122 = 400
BC2 = 202 = 400
Do đó AB2 + AC2 = BC2
Theo ĐL Pytago đảo, ΔABC vuông tại A
b) Do AB vuông góc AC
MF vuông góc AC
Nên MF // AB
Xét ΔABC có: MB=MC(gt)
MF// AB(cm trên)
Suy ra MF là đường TB của ΔABC
=> F là trung điểm AC
Vậy FA=FC(đpcm)
c) Xét ΔABC có : MB = MC(gt)
MA = ME (gt)
Nên ME là đường TB của ΔABC
=> ME // AC ; ME =\(\frac{1}{2}\)AC
Mà AC vuông góc AB (cm trên)
Vậy ME vuông góc với AB
Do AC= 12 cm (gt)
Nên ME = 1/2 AC = 12/2= 6cm
Vậy ME= 6cm.