K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7

Lời giải:
Gọi $d=ƯCLN(a,ab+16)$

$\Rightarrow a\vdots d; ab+16\vdots d$

$\Rightarrow 16\vdots d$

$\Rightarrow d\in \left\{1; 2; 4; 8; 16\right\}$

Vì $a\vdots d; a$ là số lẻ nên $d$ lẻ.

$\Rightarrow d=1$

Vậy $ƯCLN(a,ab+16)=1$ hay $a,ab+16$ là hai số nguyên tố cùng nhau.

3 tháng 6 2021

Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)

Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)

Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)

=> \(a^2+b^2+a+b⋮d^2\)

Lại vì  \(a⋮d\) và  \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)

=> \(a+b⋮d^2\)

=> \(a+b\ge d^2\) (đpcm)

2 tháng 2 2017

Giả sử a và ab +  4 cùng chia hết cho số tự nhiên d ( d khác 0 ) 

Như vậy thì ab chia hết cho d , do đó hiệu ( ab + 4 ) - ab = 4 cũng chia hết cho d

=> d = { 1 ; 2 ; 4 }

Nhưng đầu bài đã nói a là 1 số tự nhiên lẻ => a và ab + 4 là các số nguyên tố cùng nhau 

 Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta có:

      ab+4=kp (1) 
      a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 
Vậy a và ab+4 nguyên tố cùng nhau

20 tháng 7 2016

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

20 tháng 7 2016

ủng hộ mik nha

Vì a là số lẻ nên a không chia hết cho 2;4;8

Gọi d là ƯCLN(a;ab+8)(Điều kiện: d≠0)

⇔a⋮d và ab+8⋮d;

⇔ab⋮d và ab+8⋮d;

⇔ab-ab-8⋮d

⇔-8⋮d

⇔d∈Ư(-8)

⇔d∈{1;-1;2;-2;4;-4;8;-8}

mà d∉{2;-2;4;-4;8;-8}(Do a là số lẻ nên a không chia hết cho 2;4;8)

nên d=1

hay ƯCLN(a;ab+8)=1

Vậy: a và ab+8 là hai số nguyên tố cùng nhau(đpcm)

13 tháng 2 2019

Bạn tìm trên mạng rồi vào câu hỏi của Messi ấy.

Có một bạn trả lời mà được Online Math lựa chọn luôn đó.

28 tháng 5 2015

Giải : giả sử a và ab + 4 cùng chia hết cho một số tự nhiên d ( d khác 0 )

Như vậy thì ab chia hết d , do đó hiệu ( ab + 4 ) - ab=4 cũng chia hết cho d 

=> d có thể bằng 1,2,4 . Nhưng a không chia hết cho 2 và 4 vì là số lẻ . Vậy d chỉ có thể bằng 1 nên các số a và ab + 4 nguyên tố cùng nhau **** bạn

28 tháng 5 2015

  Gọi k là ước số của a và ab+4 
Do a lẻ => k lẻ 
Ta biểu diễn: 
{ab+4=kp (1) 
{a=kq (2) 
Thay (2) vào (1) 
=> kqb+4 =kp 
=> k(p-qb)=4 
=> p-qb =4/k 
do p-qb nguyên => k là ước lẻ của 4 => k=1 

Vậy a và ab+4 nguyên tố cùng nhau