Biết S=[a;b] là tập nghiệm của bất phương trình 3.9 x − 10.3 x + 3 ≤ 0. Tìm T = b − a .
A. T = 8 3 .
B. T = 1
C. T = 10 3 .
D. T = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = a + lal + a + lal+....+ a + lal ( có 2014 só hạng)
S = a + a + a +a +........+ a+a ( có 2014 số a)
S = 2014.a
Ta có:
ƯCLN(a,b) = 56
Suy ra : a chia hết cho 56
và b chia hết cho 56
Ta có:a là số bị chia,56 là số chia,thương là m khác 0
b là số bị chia,56 là số chia,thương là n khác 0
Mà a + b = 224
Hay 56m + 56n = 224
56 x (m+ n ) = 224
m + n = 224 : 56
m + n = 4
+trường hợp 1
m = 1;n = 3
khi đó : a = 56 x m = 56 x 1 = 56 (thõa mãn)
b = 56 x n = 56 x 3 = 168
+trường hợp 2:
m = 2;n=2
khi đó : a = 56 x m = 56 x 2 = 112 (không thõa mãn)
b = 56 x n = 56 x 2 = 112
+trường hợp 3
khi đó: a = 56 x m = 56 x 3 = 168 (thõa mãn)
b = 56 x n = 56 x 1 = 56
bài b cậu tự làm nha
\(T=\left(b+c-a\right)\left(a+c-b\right)+\left(a+c-b\right)\left(a+b-c\right)+\left(a+b-c\right)\left(b+c-a\right)\)
\(=c^2-\left(a-b\right)^2+a^2-\left(b-c\right)^2+b^2-\left(a-c\right)^2\)
\(=\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)\)
\(=2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)?????
S= -(a-b-c)+(-c+b+a)-(a+b)
= -a+b+c-c+b+a-a-b
= (-a+a-a)+(b+b-b)+(c-c)
=-a+b+0
=b-a
vì a>b nên |s|=a-b
vậy.........
sai thì thôi nha!
Gọi \(A=\dfrac{b}{a-b}\)
\(\Rightarrow\dfrac{1}{A}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
Ta có nếu A là số tối giản thì \(\dfrac{1}{A}\)cũng là số tối giản và ngược lại
Mà \(\dfrac{a}{b}\);1 là các số tối giản nên \(\dfrac{1}{A}\) là số tối giản
Hay \(\dfrac{b}{a-b}\) là số tối giản
S = - ( a - b - c ) + ( - c + b + a ) - ( a + b )
= - a + b + c - c + b + a - a - b
= ( -a + a - a ) + ( b + b - b ) + ( c - c )
= -a + b + 0
= b - a
Vì a>b nên |S| = a-b
Đáp án D
B P T ⇔ 3 3 x 2 − 10 10 x + 3 ≤ 0 ⇔ 1 3 ≤ 3 x ≤ 3 ⇔ − 1 ≤ x ≤ 1 ⇒ ⇒ T = 2.