K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cách viết phương trình đường thẳng đi qua 2 điểm1.1. Cách 1: Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)Gọi phương trình đường thẳng có dạng d: y=ax+bVì A và B thuộc phương trình đường thẳng d nên ta có hệThay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.1.2. Cách 2 giải nhanhTổng quát dạng bài viết phương trình đường...
Đọc tiếp

1. Cách viết phương trình đường thẳng đi qua 2 điểm

1.1. Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

  • Gọi phương trình đường thẳng có dạng d: y=ax+b
  • Vì A và B thuộc phương trình đường thẳng d nên ta có hệ
  • Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

1.2. Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).


Cách giải:
Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)
Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)
Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)
Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Bài tập ví dụ viết phương trình đường thẳng đi qua 2 điểm

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

⇔  

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết  A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Vì B có hoành độ bằng 2 và thuộc (P) nên ta có tung độ y =–(2)²=−4 ⇒ B(2;−4) còn  cách  khác k ?

0
19 tháng 9 2019

 

a) Vì A, B thuộc (P) nên:

x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2  ,  B ( 2 ; 2 )

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1

Vậy (d):  y = 1 2 x + 1 .

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5

Vậy khoảng cách từ gốc O tới (d) là  2 5 5 .

 

16 tháng 12 2023

a: Thay x=1 và y=2 vào y=ax+b, ta được:

\(a\cdot1+b=2\)

=>a+b=2

Thay x=0 và y=1 vào y=ax+b, ta được:

\(a\cdot0+b=1\)

=>b=1

a+b=2

=>a=2-b

=>a=2-1=1

Vậy: phương trình đường thẳng AB là y=x+1

b: Thay x=-1 vào y=x+1, ta được:

\(y=-1+1=0=y_C\)

vậy: C(-1;0) thuộc đường thẳng y=x+1

hay A,B,C thẳng hàng

c: Thay x=3 và y=2 vào y=x+1, ta được:

\(3+1=2\)

=>4=2(sai)

=>D(3;2) không thuộc đường thẳng AB

d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)

Vì (d) vuông góc với AB nên \(a\cdot1=-1\)

=>a=-1

=>y=-x+b 

Thay x=3 và y=2 vào y=-x+b, ta được:

b-3=2

=>b=5

vậy: (d): y=-x+5

30 tháng 4 2023

1 tháng 5 2023

bạn ơi tại sao khoảng cách bé nhất lại cho =0 z bạn

18 tháng 12 2023

a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)

Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)

Vậy: (d): y=3x+b

Thay x=1 và y=2 vào (d), ta được:

\(b+3\cdot1=2\)

=>b+3=2

=>b=-1

vậy: (d): y=3x-1

b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3

=>(d): y=ax+3

Thay x=-4 và y=7 vào (d), ta được:

\(-4a+3=7\)

=>-4a=4

=>a=-1

vậy: (d): y=-x+3

c: A(1;4); B(4;8)

=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)

=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)

c: y=2x-6

=>2x-y-6=0

Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;

\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)

3 tháng 5 2018

Chọn D

Xét hàm số:

Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là

Vậy phương trình đường thẳng 

9 tháng 5 2021

a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)

=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .

b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .

- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)

Vậy ...

7 tháng 12 2021

Mất đường (d2) rồi bạn!